BASIC FORMULAS

Class XI Physics Formula & Equation List

Get Free Counselling

MBBS | BDS | BAMS | BHMS | BUMS

NURSING | PARAMEDICAL | PHARMACY

Register at www.shikshaview.com

ADMISSION HELPLINE

+91-8126030103

www.shikshaview.com info@shikshaview.com facebook.com/shikshaview twitter.com/shikshaview youtube.com/shikshaview

BASIC FORMULAS

Class XI Physics Formula & Equation List

Relative Deviation

Relative Deviation = $\frac{\text{Mean Deviation}}{\text{Mean Value}} \times 100\%$

Prefixes

Prefixes	Value	Standard form	Symbol
Tera	1 000 000 000 000	10 ¹²	Т
Giga	1 000 000 000	10^{9}	G
Mega	1 000 000	10^{6}	М
Kilo	1 000	10^{3}	k
deci	0.1	10 ⁻¹	d
centi	0.01	10-2	С
milli	0.001	10-3	m
micro	0.000 001	10-6	μ
nano	0.000 000 001	10-9	n
рісо	0.000 000 000 001	10 ⁻¹²	р

Units for Area and Volume

$1 m = 10^{2} cm$ $1 m^{2} = 10^{4} cm^{2}$	(100 cm) $(10,000 \text{ cm}^2)$	$1 \text{ cm} = 10^{-2} \text{ m}$	$(\frac{1}{100}m)$
$1 \text{ m}^3 = 10^6 \text{ cm}^3$	$(1,000,000 \text{ cm}^3)$	$1 \text{ cm}^2 = 10^{-4} \text{ m}^2$	$(\frac{1}{10,000}m^2)$
		$1 \text{ cm}^3 = 10^{-6} \text{ m}^3$	$(\frac{1}{1,000,000}m^3)$

Force and Motion

Average Speed

www.shikshaview.com info@shikshaview.com facebook.com/shikshaview twitter.com/shikshaview youtube.com/shikshaview

Ticker Tape

Finding Velocity:

Momentum

$p = m \times v \qquad p = momentum \\ m = mass \\ v = velocity \end{cases}$	$(kg ms^{-1})$ (kg) (ms^{-1})
--	---------------------------------------

Principle of Conservation of Momentum

	$m_1 u_1 + m_2 u_2 = m_1 u_1$	$v_1 + m_2 v_2$	
Newton's Law of Motion Newton's First Law	$m_1 = mass of object 1$ $m_2 = mass of object 2$ $u_1 = initial velocity of object 1$ $u_2 = initial velocity of object 2$ $v_1 = final velocity of object 1$ $v_2 = final velocity of object 2$	(kg) (kg) (ms ⁻¹) (ms ⁻¹) (ms ⁻¹)	

In the absence of external forces, an object at rest remains at rest and an object in motion continues in motion with a constant velocity (that is, with a constant speed in a straight line).

Newton's Second Law

 $F\alpha \frac{mv-mu}{t}$

F = ma

The rate of change of momentum of a body is directly proportional to the resultant force acting on the body and is in the same direction.

 $F = Net Force \qquad (N \text{ or } kgms^{-2})$ $m = mass \qquad (kg)$ $a = acceleration \qquad (ms^{-2})$

Implication

When there is resultant force acting on an object, the object will **accelerate** (moving faster, moving slower or change direction).

Newton's Third Law

Newton's third law of motion states that for every force, there is a reaction force with the same magnitude but in the opposite direction.

Impulse

Impulse = Ft	F = force $t = time$	(N) (s)
Impulse = $mv - mu$	m = mass $v = final velocity$ $u = initial velocity$ (kg) (ms^{-1}) (ms^{-1})
Impulsive Force		
$F = \frac{mv - mu}{t}$ Gravitational Field Strength	F = Force $t = time$ $m = mass$ $v = final velocity$ $u = initial velocity$	(N or kgms ⁻²) (s) (kg) (ms ⁻¹) (ms ⁻¹)
$g = \frac{F}{m}$	g = gravitational field stren F = gravitational force m = mass	gth $(N kg^{-1})$ $(N or kgms^{-2})$ (kg)
Weight		
W = mg	W = Weight (m = mass (kg) g = gravitational field strength/gra	(N or kgms ⁻²) avitational acceleration (ms^{-2})

Smooth Pulley

With 1 Load		2
. <u></u>		Moving with uniform speed:
	$T_1 = T_2$	$T_1 = mg$
T		
1	Stationary:	Accelerating:
mg ↓	$T_1 = mg$	$T_1 - mg = ma$

With 2 Loads

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Finding Acceleration:	
26	$(\text{If } m_2 > m_1)$	
т		$m_2g - m_1g - (m_1 + m_2)a$
T_1 T_2	Finding Tension:	
	$(If m_2 > m_1)$	
m₁g ↓		$T_1 = T_2$
↓ m ₂ g		$T_1 - m_1 g = ma$
		$m_2g - T_2 = ma$

Vector

Inclined Plane

Energy

Kinetic Energy		
$E_K = \frac{1}{2}mv^2$	$E_{K} = Kinetic \ Energy$ m = mass v = velocity	(J) (kg) (ms^{-1})
Gravitational Potential Ene	rgy	
$E_P = mgh$	$E_P = Potential Energy$ m = mass g = gravitational accelerations $h = height$	(J) (kg) (ms^{-2}) (m)
Elastic Potential Energy		
$E_P = \frac{1}{2} k c^2$	$E_P = Potential Energy$ k = spring constant x = extension of spring	(J) (N m ⁻¹) (m)
$E_P = \frac{1}{2}Fx$	F = Force	(N)
Power and Efficiency		
Power		
$P = \frac{W}{t}$ $P = \frac{E}{t}$	P = power W = work done E = energy change t = time	(W or Js ⁻¹) (J or Nm) (J or Nm) (s)
Efficiency	Efficiency = $\frac{\text{Useful E}}{\text{Ener}}$ Or Efficiency = $\frac{\text{Power C}}{\text{Power I}}$	$\frac{\text{Energy}}{\text{gy}} \times 100\%$ $\frac{\text{Dutput}}{\text{Input}} \times 100\%$
Hooke's Law		
F = kx	F = Force $k = spring \ constant$ $x = extension \ or \ compression$	(N or kgms ⁻²) (N m ⁻¹) on of spring (m)

Force and Pressure

Barometer

Pa	Pressure in unit cmHg	Pressure in unit Pa
26cm	$\mathbf{P}_{\mathbf{a}}=0$	$\mathbf{P}_{\mathrm{a}}=0$
P _b P _c	$P_b = 26$	$P_b = 0.26 \times 13600 \times 10$
	$P_{c} = 76$	$P_{c} = 0.76 \times 13600 \times 10$
50cm	$P_d = 76$	$P_d = 0.76 \times 13600 \times 10$
P _e ↓ P _d ▲ 8cm	$P_e = 76$	$P_e = 0.76 \times 13600 \times 10$
↓ .P _f	$P_{f} = 84$	$P_{f} = 0.84 \times 13600 \times 10$

(Density of mercury = 13600kgm⁻³)

Pascal's Principle

Archimedes Principle

Heat

Heat Change

$$Q = mc\theta$$

m = massc = specific heat capacity $\theta = temperature change$

$$(kg)$$

$$(J kg^{-1} \circ C^{-1})$$

$$()$$

Electric Heater	Mixing 2 Liquid	
Energy Supply, $E = Pt$ Energy Receive, $Q = mc\theta$	Heat Gain by Liquid 1 = Heat Loss by Liquid 2 $m_1c_1\theta_1 = m_2c_2\theta_2$	
Energy Supply, E = Energy Receive, Q	$m_1 = mass \ of \ liquid \ l$	
$Pt = mc\theta$	c_1 = specific heat capacity of liquid 1 θ_1 = temperature change of liquid 1	
E = electrical Energy (J or Nm)	$m_2 = mass of liquid 2$	
P = Power of the electric heater (W)	$c_2 = specific heat capacity of liquid 2$	
t = time (in second) (s)	θ_2 = temperature change of liquid 2	
Q = Heat Change (J or Nm) m = mass (kg) c = specific heat capacity (J kg-1 °C1) $\theta = temperature change (°)$		
Specific Latent Heat		
Q = mL		
$Q = Heat Change \qquad (J \text{ or } Nm)$ $m = mass \qquad (kg)$ $L = specific latent heat \qquad (J kg^{-1})$		
Boyle's Law		
$P_1V_1 = P_2V_2$		

(Requirement: Temperature in constant) **Pressure Law**

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

(Requirement: Volume is constant)

Charles's Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

(Requirement: Pressure is constant) Universal Gas Law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

P = PressureV = VolumeT = Temperature

(Pa or cmHg) (m³ or cm³) (MUST be in K(Kelvin))

Light

Refractive Index

Lens

Power

Astronomical Telescope

Magnification,

m = linear magnification $P_e = Power of the eyepiece$ $P_o = Power of the objective lens$ $f_e = focal \ length \ of the \ eyepiece$ $f_o = focal \ length \ of the \ objective \ lens$

Distance between eye lens and objective lens

$d = f_o + f_e$

d = Distance between eye lens and objective lens $f_e = focal$ length of the eyepiece $f_o = focal$ length of the objective lens

Compound Microscope

Magnification

 $m = m_1 \times m_2$ = <u>Height of first image, I₁</u> × <u>Height of second image, I₂</u> Height of object × <u>Height of first image, I₁</u>

Height of second image, I_2

Height of object, I_1

m = Magnification of the microscope $m_1 = Linear magnification of the object lens$ $m_2 = Linear magnification of the eyepiece$

Distance in between the two lens

$$d > f_o + f_e$$

d = Distance between eye lens and objective lens $f_e = focal$ length of the eyepiece $f_o = focal$ length of the objective lens