	ATOMIC STRUCTURE
	Atom (greek word)
	1-3
	A TOM
	(not) (divisible) [according to John Dalton]
	Atom: According to John Dalton (1803-1808) consider
	that "all matters are composed of small particles
	that "all matters are composed of small particles called atoms which are not jurther divisible".
	Dalton's Atomic Theory:
	It is based on two laws:
	E) law of conservation of mass.
	ii) law of definite / constant proportion
	Features of Daltons Atomic Theory:
	It includes five postulates.
	MODULE 1 (PQ 157)
1.	Discovery of Electron
	Cathode ray tube experiment:
	1111 (high voltage of 10,000 volt)
	1111
	pas at low pressure
	(athode(-) (10-4 mm Hg) (+) anode
	Metal electrode 2 glass lube
	(vaccium pump)) (discharge tube
	This experiment was conducted by william crookes

-	Apparatus:
_	The cathode ray discharge tube consist of a long
_	glass tube at the ends of which two metal
_	electrodes are placed, those two electrodes are
	connected to a source of high voltage and a
	vaccum pump is attached to the glass tube
_	which can control the pressure of the gas filled
	in the tube.
	Working:
•	when a high voltage of 10000 V is applied across
	the electrodes. In between these electrodes a
	gas at low pressure is present. Then, a stream
	of particles were observed that were flowing
	from cathode towards anode. These rays were
_	termed as cathode rays.
0	For the verification of cathode rays, few holes
-	were made in the anode and the tube behind
	the anode was coated with a fluroscent
_	material like zinc sulphide.
0	when the cathode ray pass through the anode
	and strike the zinc supplied coating, they form
	a bright spot over the coating. This verified
	that some particles were moving from cathode
-	side towards anode side and thus these particles
-	were known as cathode rays.
	Properties of cathode rays:
	MODULE 1 (Pg 157)
	* Sharacteristics of cathode ray does not
	depend on the nature of the gas and the
	electrodes used in the discharged tube. Aim4aiin

	* The specific charge e/m ratio (charge/mass
	ratio) of cathode rays (electron) does not depends
	on the nature of gas and electrodes present
	in the discharged tube. Mence, we can say that
-	electrons are the basic constituents of all the
	atoms.
2	Discovery of Proton: (Anode rays or canal rays)
	Goldstein observed that certain rays are moving
	from the side of anode towards cathode in
-	a discharged tube. For verifying he used a
	perferented cathode and coated the tube
	behind the cathode with a fluresence material
	called zinc sulphide, he observed that some
	bright spots are formed on the zinc sulphide
	coating, which verified that certain rays
	were moving from the side of the anode towards the cathode. Hence, he named them
-	as anode rays or canal rays.
	The ways of the same
	Properties of Anode rays
	MODULE 1 (Pg 157 and 158)
	* The nature of anode rays depends upon the
	nature of the gas present in the discharged
	tube.
	* The specific charge of anode rays depends
	upon the nature of the gas present in the
-	discharged tube.
-	* The specific charge value for the anode rays
	was maximum when the hydrogen was filled
	in the discharge tube It indicates that the
Aim4aiims.in	positively charge ion from hydrogen is lightest. 3

	This lightest positively charged particle was
	named as Proton.
3.	Discovery of Neutron:
	James chadwick in 1932 bombarded a thin sheet
	of Beryllium with jast moving repha particles.
	It was observed that nightly penetrating ways
	of neutral particles were produced. These particles
	were named as neutrons.
	9 4 19
	${}^{9}_{4} \text{Be} + {}^{4}_{2} \text{He} \rightarrow {}^{12}_{6} \text{C} + {}^{1}_{0} \text{n}$
	C 2
	Ex-particle 3 Eneutron 3
	Mr. Alexandre
	The electron :
	Properties of electron:
	MOLULE I (19 158)
	The Proton:
	Properties of proton:
-11.7	MODULE 1 (PQ 158)
	3
	The Neutron:
	Properties of Neutron:
	MODULE 1 (Pg 159)
-	
	Other jundamental particles: Neutrino and Antineutrino
0	Neutrino and Antineutrino
0	Positron (positive electron 10)

Q.1.	Pick out the convect sequence for the order
	of the mass.
í)	e>p>n> T (mu)[meson]
ií)	p>e>TI>n
lii)	$n > p > e > \pi$
(v)	$n > p > \pi > e$
	Ans: iv)
Q-2	Pick out the correct sequence for e/m natio.
i)	$e > p > n > \alpha$
ii)	$p > e > \alpha > n$
iii)	$e > \alpha > p > n$
(a)	$e > p > \alpha > n$
	Ans: iv)
	e/m ratio of $e = \frac{1.6 \times 10^{-19} \text{ c}}{9.1 \times 10^{-28} \text{ g}} = \frac{1.76 \times 10^{8} \text{ c}}{9.1 \times 10^{-28} \text{ g}}$ e/m ratio of $p = \frac{1.6 \times 10^{-19} \text{ c}}{1.67 \times 10^{-24} \text{ g}} = \frac{9.58 \times 10^{4} \text{ c}}{1.67 \times 10^{-24} \text{ g}}$
	e/m ratio of n = 0
	elm ratio of $\alpha = 2 \times 1.6 \times 10^{-19} = 9.58 \times 10^{4}$ $4 \times 1.67 \times 10^{-24}$ 2
Q-3.	Pick out the correct sequence for the
	e/m ratio:
i)	$H^{+} > D^{+} > He^{+} > He^{+2}$ $H^{+} > D^{+} > He^{+2} > He^{+}$
	H D D D HO D HO
ii) iii)	$H^{+} > D^{+} = He^{+2} > He^{+}$

	e/m ratio of $H^{+} = 1.6 \times 10^{-19} c$ = $9.58 \times 10^{4} c/g$ $1.67 \times 10^{-24} g$
	e/m ratio of $He^{+} = 1.6 \times 10^{-19} c = 9.58 \times 10^{4} c/g$ $4 \times 1.67 \times 10^{-24} e$
	e/m ratio of $He^{+2} = 2 \times 1.6 \times 10^{-19} c = 9.58 \times 10^{4} c/$ $4 \times 1.67 \times 10^{-24} c$
	e/m ratio of $D^{+} = 1.6 \times 10^{-19} c^{-9} = 9.58 \times 10^{4} c/g$ $2 \times 1.67 \times 10^{-24} g = 2$
	Representation of an atom of an element A -> Mass no
	$X \rightarrow Symbol of an element$ $z \rightarrow Atomic no.$
	Mass no = no. of proton + no. of neutrons = no. of nucleons
	Atomic no = no. of proton = nuclear charge.
ž)	For a neutral atom, no. of electrons (e) = no of proton $(p) = z$.
ii)	70x a charged atom (con) no. of electrons (c) = z- (charge on atom)
iii)	No. of neutrons. Mass no(A) - Atomic no(z)
)	The no of electron = no of protons.

24 Mg +2
e) $n^{\circ} = 23 - 11 = 12$
a) $e^- = LL$
c) $p^+ = Z = 11$
b) Z = 11
a) $A = 23$
23 Na
y 1V - A - L - 10 - 8 - 8
d) $e^- = Z - (charge) = Z - (-2) = 8 + 2 = 10$ e) $n^0 = A - Z = 16 - 8 = 8$
c) $p^{T} = Z = 8$
b) Z = 8
a) $A = 16$
¹⁶ 0 ⁻²
16 0-2
e) $n^{\circ} = A - Z = 14 - 7 = 7$
d) e= = z - (charge) = 7-(-3) = 7+3=10
$p^{+} = Z = 7$
b) Z = 7
a) A = 14
14 N -3
no. of proton (p), electron (e) and neutron (n
Find the value of Mass no (A), Atomic no (Z),
/ · · · · · · · · · · · · · · · · · · ·
Mass no is always a whole namber.
and its ions differ in the no. of electron
electrons are transferred. Therefore, an atom
when an ion of an atom is formed, the

	b) Z = 12	
	c) $p^+ = Z = 12$	
	d) $e^- = z - (charge) = 12 - 2 = 10$.	
	e) $n^{\circ} = A - Z = 24 - 12 = 12$	
	9.7	
v)	27 13 Al	
	a) $A = 27$	
	b) Z = 13.	
_	c) $p^{+} = Z = 13$.	
	a) $e^{-} = 13$	
	e) $n^{\circ} = A - Z = 27 - 13 = 14$	
vi)	19 F	
	a) A = 19	
	b) $Z = 9$.	
	$p^+ = z = 9$	
	d) $e^- = Z - (eharge) = Z - (-1) = 9 + 16 = 16$	2
	e) $n^{\circ} = A - Z = 19 - 9 = 10$	
	39 pt	
vů)	39 K+ 19 K+	
	a) A = 39	
	b) Z = 19	
	$C) p^{+} = Z = 19$	
-	d) $e^{-} = Z - (charge) = 19 - 1 = 18$	
-	e) $n^{\circ} = A - Z = 39 - 19 = 20$	
iii)	40 CO_	
uij	A = 40	
	(b) $Z = 20$	
	z = z = z = z = z = z = z = z = z = z =	
	$d) e^{-} = 20$,
	E). $3^3 = 3 - 7 = 40 - 30 = 20$	Aim4aiim

Q.5.	If in A-3, the total no. of electrons are 18
,	and mass no. is 31, then find the value of
	Atomic no, proton and neutron
	No. of e = Z - (charge)
	18 = z - (-3)
	18 - 3 = Z
	:. Z = 15
	No of $p^{\dagger} = 15$
	No of $n^0 = A - Z = 31 - 15 = 16$
	Some important definitions
i)	Atomic number (z):
	MODULE 1 (PQ 159)
ii)	Mass number (A):
	MODULE 1 (to 159)
	Mass number ≈ Atomic weight
6	Mass no. of an atom is always a whole no.
	but atomic weight may be in decimal because
	atomic weight is the average of weights of
	all the isotops of that element.
	element (Y, Y2, Y3); Mass (W, W2, W3); % or ratio (x1, x2, x3)
	Atomic weight: w1x1 + w2x2 + w3x3
	$\chi_1 + \chi_2 + \chi_3$
iii)	Isotops:
	MODULE 1 (Pg 161)
iv)	Isobaru:
	AIDDULE ! (Po 163)

v)	Isotones / Isoneutronic / Isotonic:
	MODULE 1 (Pg 163)
vi)	Isodiaphers:
	MODULE 1 (Pg 163)
	common mistake:
	we sometimes shifts the value of (no-p+) to
	(A-Z) which are supposed to be isotones
vii)	Isosters:
	MODULE 1 (Pg 162)
viii)	Isoelectronic:
	MODULE 1 (Pg 163)
3.6	If in x^{+2} , the mass no (A) = 55 and the no.
	of protons (pt) = 25, then find out the value
	of mass no (A), Atomic no (Z), no of protons (p+)
	of mass no (A), Atomic no (Z), no of protons (p+) no of neutrons (n°) and electrons (E) in x^{-3}
	$X^{+2} \Rightarrow A = 55$
	$p^{+} = 25 = Z$
	$n^0 = A - Z = 55 - 25 = 30$
	$e^- = Z - (charge) = 25 - 2 = 23.$
	$X^{-3} \Rightarrow A = 55$
	Z = 25
	$p^{+} = 25$
	$n^{\circ} = A - Z = 55 - 25 = 30$
	$e^{-} = Z - (charge) = 25 - (-3) = 28$
.7.	If in X^{-2} , no. of $p^{+} = 16$, then find the number of e^{-} in X^{+2}
	of e in x+2

	$X^{-2} \Rightarrow p^+ = 16 = Z$
	$e^- = z - (charge) = 16 - (-2) = 18$
	$x^{+2} \Rightarrow e^{-} = z - (charge) = 16 - 2 = 14$ $\therefore z = p^{+} = 16$
Q-8.	If in 12 c, atoms of the mass of the proton is halved, neutron is tripled and that of
	electron is doubled, then what will the
	it change.
	Initial ${}^{12}C \Rightarrow Mass of an atom = Mass of (p^+ + no. of p^+ = 6$
	$no. of n^{\circ} = A - Z = 12 - 6 = 6$
	: Mass of 1 proton = 1 amu
	Mass of 6 proton = 1x6 = 6 amu
	: Mass of 1 neutron = 1 amu
	Mass of 6 neutron = 1×6 = 6 anu.
	Total mass = (6+6) amu = 12 amu
	New $^{12}C \Rightarrow Mass of p^{\dagger} = 1 \times 6 \text{ and } = 3 \text{ an}$
	Mass of n° = 3 × 6 anu = 18 anu
	Jotal mass = (3+18) amu = 21 amu
•	The mass of e- is not taken into consideration
1	because its mass is negligiable.
	Change in % = New mass - Initial mass x 100
	Initial mass
	= 21 - 12 × 100
	12
	$=\frac{9}{12}\times100=\frac{75}{12}$

9.9	If in 14N, the mass of pt is doubled and e-
•	is harfed and mass of neutron is same.
	Then what will be & change in Atomic weight
	$7^{\prime N} \Rightarrow no. of p^{+} = 7$
	Mass of $1 p^+ = 1 amv$
-	Mass of $7 p^{+} = 1 \times 7 = 7 \text{ amu}$
	$no. of n^{\circ} = 14 - 7 = 7$
	mass of $L n^{\circ} = L amu$
	Mass of 7 n° = 1x7 = 7anu
	". 70tal mass = 7+7 = 14 amu.
	given condition.
	$7N \Rightarrow \text{mass of } p^{\dagger} = 2 \times 7 = 14 \text{ amu.}$
	mass of n° = 7 ance.
	: Total mass = 14+7 = 21 amu
	$\frac{\%}{14}$ change = $\frac{21-14}{14} \times 100$
	= 7 x 100 = 50%
	Hence adomic weight increases by 50%
n . 10	11 in a 160 along the att a 111
Q-10.	If in a \$0 atom, the mass of pt is doubled.
	mass of e is halfed and mass of no weigh 1
	Then, find the percentage change in the
	atomic weight. 160 \Rightarrow no. of p [†] = no of $\mathbf{r}_{\mathbf{r}}^{0} = 2$
-	Mass of 1 pt = mass of 1 no = 1 amu
	no of $(p^{+} + n^{\circ}) = 8 + 8 = 16$.
	$mass of (p^{+} + n^{\circ}) = 8 + 8 amu = 16 amu$
	given condition,
12.2	$\frac{3}{8}0 \Rightarrow \text{ mass of } p^{+} = 2 \times 8 = 16 \text{ amu}$
	mass of $n^{\theta} = 1 \times 8 - 2$ and
12	Aim4aiin

	mass of $(p^{+} + n^{0}) = 16 + 2 = 18$ amu
-	mass of $(p^{+} + n^{0}) = 16 + 2 = 18$ amu Change in percentage = $18 - 16 \times 100$.
	= 2 × 100 = 12.5 %
	Hence, atomic weight increases by 12.5%
Q. 11	Assuming that atomic weight of 6°C is 150 units from the atomic table, then what will be the weight of 160 atom and 7°N.
	$0.02 \text{ c} \Rightarrow \text{no. of } p^{\dagger} + \text{no of } n^{\circ} = 12.$ mass of $(p^{\dagger} + n^{\circ}) = 12 \text{ amu}$
	given condition,
	$n^{160} \Rightarrow no \ of \ p^{+} + no \ of \ n^{\circ} = 16.$ mass of $(p^{+} + n^{\circ}) = 16$ anu.
	: 12 anu = 150 units
	1 amu = 150 units and.
	16 anu = 150 x 16 = 200 units
	$7N \Rightarrow no. of p^{\dagger} + no of n^{\circ} = 14$
-	mass of (p+ + n°) = 14 amu
	: 14 amu = 150 x 14 = 175 units.
Q.12.	Chlorine exist in the nature in the form of
	two isotops 17 cl and 17 cl . If the ratio of
	their occurrence in the nature is 3:1 respective
	Determine the average atomic weight of ce.
W 51	Atomic weight = w,x, + w2x2
im4aiims.in	$\chi_1 + \chi_2$ 13

	35×3 + 37×1 = 105 + 37
	3+1 4
	2 142 2 35.5 4
	+
Q.13.	Boron has two isotops 50 and 50. If their
	relative percentage of occurrence in nature is
	80% and 20% respectively. then, determine its
	average atomic weight.
	Atomic weight = w,x, + w2x2
	$\chi_1 + \chi_2$
	= 10 x 80 + 11 x 20
	80 + 20
	= 800 + 220 = 1020 = 10-2
	100 100
Q.13.	The average atomic weight of an element Y
	is 41.8. If it exist in the form of two
	is 41.8. If it exist in the form of two isotops to Y and 42 Y, then, calculate their
	percentage of occurrence in the nature.
	Atonic weight = wix, + w2x2
	$\alpha_1 + \alpha_2$
	percentage of occurrence = x% and (100-x)%
	$41.8 - 40 \times \times + 42 \times (100 - 2)$
	x + (100 - x)
	41.8 = 40x + 4200 - 42x
	100
	4180 - 4200 = -2x
	-20 = -2x
	$2 = -20 = 10^{\circ}$
	$2.2 \times 20 = 10\%$

Q-14.	An element has three isotops and their weigh
	are 11, 12 and 13 units respectively. If their
	relative percentage in nature is 85, 10 and
	respectively then find out its average atomic weight
	Average Atomic weight = WIX, + W2X2 + W3X3
	$\chi_1 + \chi_2 + \chi_3$
	= 11×85 + 12×10 + 13×5
	85 + 10 + 5
	= 935 + 120 + 65
	100
	= 1120 = 11.2 -
	100
	Model: A atomic .
É)	Models of atoms:
	Thomson's model of atom (1904)
	MODULE 1 (Pg 165)
•	He was the first scientist to propose a detaile
	model of an atom.
	I DECLINATION TO DIE PRODEL DESCRIPTIONS DES ANDRES AND A
	According to his model, electrons are embedded
•	in positively charged sphere of an atom
	in positively charged sphere of an atom An atom is electrically neutral because it
,	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as - Plum - Pudding Model
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as - Plum - Pudding Model - Raisin Pudding Model
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as - Plum - Pudding Model
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as - Plum - Pudding Model - Raisin Pudding Model
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as - Plum - Pudding Model - Raisin Pudding Model - Water Melon Model
	in positively charged sphere of an atom An atom is electrically neutral because it contains equal number of protons and electrons This model of an atom is also known as - Plum - Pudding Model - Raisin Pudding Model - Water Melon Model

	It represented a static model that is electron
	were stable.
îi)	Rutherford's &-scattering experiment:
	Observation:
	MODULE 1 (Pg. 165)
0	Most of the a-particles passed undeflected.
0	Most of the a-particles passed undeflected. Few of the a-particles got deflected through small angles.
	A few of the d-particle (1 out of 20,000) retraced back its path.
	Conclusion:
	Most of the particles passed undeflected,
-	Most of the particles passed undeflected, indicating that lots of spaces in an atom
0	The positively charged were not uniformly
	distributed, as thomson said because only few
	particles got deflected. The positive charge
	was concentrated in a small region in an atom which was dat later came to be
	known as neutrons, nucleus
	The size of the nucleus is much smaller
	as compared to the size of an atom
	MODULE 1 (Pg 165 and 166)

	The proposed structure of an atom:
0	The positive charge and mass of the entire
	atom is concentrated in a small region
	known as nucleus in the centre of the atom.
•	The negatively charged electrons revolves around
	the nucleus in the fixed orbit in the same
	way like planets revolves around the sun.
	Hence, it is also known as Planetary model
	of an atom?
•	The electrostatic force of attraction acts
	between the electrons (e-) and nucleus of an
	force acting on electron in tangential direction
	force acting on electron in tangential direction's centriqueal pouce
	force acting on electron in tangential direction
	force acting on electron in tangential direction's centrique at parce electrostatic (e) m centrique parce force (e)
	force acting on electron in tangential direction's centriqueal pouce
i)	APPLICATION of Rutherford Model: MODULE 1 (PQ 166) Radius of an atom = 4A = 10 ⁻¹⁰ m = 10 ⁵ m
i)	APPLICATION of Rutherford Model:
ů)	APPLICATION of Rutherford Model: MODULE 1 (Po 166) Radius of an atom = 4A = 10 ⁻¹⁰ m = 10 ⁵ m

li)	Volume of an atom - 4/3 x (4A) 3 - (10-10)3
	volume of the nucleus 4/3 T (Har)3 (10-15)3
	= 10 ⁻³⁰ = 10 ¹⁵
	10-45
	: Volm of an atom = 10 volm of the nucleus.
iii)	The radius of the nucleus is proportional to
	The radius of the nucleus is proportional to the cube root of the number of nucleons (mass no.)
	$R \times A^{\frac{1}{3}}$ $\Rightarrow R = R_0 A^{\frac{1}{3}} cm$
	$\Rightarrow R = R_0 A^{73} cm$
	where Ro = 1.33 × 10 cm (constant)
	' $A = mass no (p^t + n^c)$
	R = Radius of the nucleus.
iv)	The relation between number of deflected
	particles and deflected angle o.
	: $\mu \propto 1$ (0 increases, μ decreases)
	sint 0
	2
	where μ = deflected particles
	where μ = deflected particles θ = deflected angle.
2.15.	Salculate the radius of a nucleus that
	contains 64 nucleons in it.
	$R = R_0 A^{1/3}$, $R_0 = 1.33 \times 10^{-13}$ cm
	$= 1.33 \times 10^{-13} \text{ cm } \times (64)^{1/3}$ $= 1.33 \times 10^{-13} \text{ cm } \times (4)^{3 \times \frac{1}{3}}$
	$= 1.33 \times 10^{-13} \text{ cm } \times (4)^{3 \times \frac{1}{3}}$
18	Aim4aiim

	-/3
	$= 1.33 \times 10^{-13} \text{ cm } \times 4$
	$= 5.32 \times 10^{-13} \text{ cm}$
Q-16.	calculate the number of deflected particle at
	an angle of 90'
	': μ α £
	sin ⁴ 0
	2 .
	$120 = \frac{k}{\sin^4 60^{\circ}} = \frac{k}{\sin^4 (30^{\circ})} - (1)$
	2
	$\mu = \kappa - \omega$
	$\mu = K = K - 0$ $\sin^{+} 90^{\circ} \sin^{+} (45^{\circ})$ 2
	Dividing (1) from (1)
	120 × K
	= Sin ⁴ (30')
	μ - κ
	sin 4 (45°)
	=> 120 - K x sin+ (45°) - (1/52) 4
	$\mu \sin^{4}(30^{\circ}) K (1/2)^{4}$
	$\frac{120}{\mu} = \frac{1}{4} \times \frac{16}{1} = 4$
	$= \mu = 120 - 30$
	4
	:. Number of deflected particle = 30

	Bransbacks:
	MODULE 1 (Pg 166 and 167)
0	He was not able to explain the stability of
	an atom
	The loss of energy by electron was not
_	continuous in an atom. because if electrons
_	loses its energy continuously, the spectrum
	observed should be continuous but the actual
-	observed spectrum consist of defined lines of
	definite prequency
•	He was not able to explain the arrangement
-	of electrons and their energy
	ELECTROMAGNETIC WAVES (EM WAVES) OR
	radiant energy / electromagnetic radiation:
	MODULE 1 (Pg 167)
,	It is a form of energy transmitted from one
	body to another in a continuous manner in
	the form of waves are called electromagnetic waves.
	WWCs.
0	It is of two types:
-	i) wave theory: proposed by Maxwell
	ii) Particle theory: proposed by Planck
,	It does not require a material medium for
	proporation and it travels with the speed
	of the light (3 x 108 m/s).

6	If a charged particle undergoes acceleration,
	it gets both electric generates both electric
	as well as magnetic field which are perpend
	cular to each other and are also perpendicu
	to the direction of propargation of light
	electros 1
	electric field \rightarrow (x) dir of propagation.
	Magnetic V field
	Characterstics of wave:
	MODULE 1 (Pg 167)
a)	wavelength: (2) (Lambda)
	It is the distance between two consecutive
	crest or two consecutive trough.
	O .
	$1m = 10^2 \text{ cm} = 10^9 \text{ nm} = 10^{12} \text{ pm} = 10^{10} \text{ Å}$
	$1 \text{ cm}^{-1} = 10^2 \text{ m}^{-1}$ and $1 \text{ cm} = 10^{-2} \text{ m}$
<i>b</i>)	Frequency: (v) (nu)
	It is the number of waves which pass through
3833	a point in 1 sec.
	I a company of the said of the
	$1 H_7 = 1 sec^{-1} = 1 cps.$
c)	1 Hz = 1 sec = 1 cps. Time period: (T) Time taken by a wave to pass through 1 poin

a)	Velocity: (c) (speed of light = 3×108 m/s)
	It is the distance covered by a wave in 1 sec
	Frequency is inversely proportional to λ . $\lambda \neq 1 = c \text{ (constant)}$
	$\lambda d \perp = c (constant)$
	N V
	c= speed of light in vaccum = 3×10 m/sec.
e)	wave number: (v) (na bar)
	It is number of waves present in 1 cm. and
	It is number of waves present in 1 cm and it is resiprocal of wave length.
	$\overline{v} = 1$
	λ
	$1 \text{ cm}^{-1} = 100 \text{ m}^{-1}$
4)	Amplitude: (a)
	It is height of crust or depth of though
9-17	The calculate the wave number of a radiation
	whose frequency is 5×10 ¹⁶ Hz
	<u>v</u> = 1
	λ
	$\lambda = C = 3 \times 10^8 \text{m/s}$
	U 5 X 10 ¹⁶ Hz
	$\vec{v} = 5 \times 10^{6-8} \cdot = 1.6 \times 10^8 \text{m}^{-1}$
	3 m
9-18.	A radio station is broadcasting at 100 mgH MHZ
	of the distance between the station and the
-11	receiver is 300 km. Then, how long would it
	take the signal to reach the receiver thind
22	ways le noth and ways mumber Aim4aiims

	$v = 100 \text{ mgH} = 100 \times 10^6 = 10^8 \text{ Hz}$
	$\lambda = 300 \text{ km} = 300 \times 1000 = 3 \times 10^5 \text{ m}$
	Time (T) = displacement (2)
	velocity (c)
	$= 3 \times 10^{5} - 10^{5-8} = 10^{-3} \text{ sec.}$
	3×108
	$\lambda = C = 3 \times 10^8 = 10^{8-5} = 10^3 3 \text{ m}$
	U 3×10 ⁸
	$\bar{U} = 1 = 1 = 0.33 \text{ m}^{-1}$
	λ 3 m
	The wave number of a beam of light is 400 cm what is the wavelength of light in nm. also, fine out the frequency of light. $\overline{v} = 400 \text{ cm}^{-1}$ $\lambda = 1 = -1 \text{ cm} = 1 \times 10^{-2} \text{ m}$ $\overline{v} = 400 \text{ doo}$ $\overline{v} = 1 \times 10^{-2} \times 10^{9} \text{ nm}$. $\sqrt{1 \text{ cm}} = 10^{-2} \text{ m}$
	$\lambda = 10^{7} \text{ nm} = 10^{7-2} = 10^{5} = 25000 \text{ nm}.$ $4 \times 10^{2} \qquad 4 \qquad 4$
	1
	$v = c = 3 \times 10^8 \text{ m/s} = 3 \times 10^8 \text{ m/s}$
	25000 nm 25 x 10 ³ x 10 ⁹ m
	$\frac{\lambda}{25000} = \frac{25 \times 10^3 \times 10^9 \text{ m}}{3 \times 10^8 \text{ m/s}} = \frac{3 \times 10^8 \text{ s}}{3 \times 10^8 \text{ s}}$
	25000 nm 25 x 10 ³ x 10 ⁹ m
	$\frac{\lambda}{25000} = \frac{25 \times 10^3 \times 10^9 \text{ m}}{3 \times 10^8 \text{ m/s}} = \frac{3 \times 10^8 \text{ s}}{3 \times 10^8 \text{ s}}$

	λ = 6000 Å
	$1 \dot{A} = 10^{-10} \text{ m}.$
	$6000 \ A = 6000 \times 10^{-10} = 6 \times 10^{-7} \ m.$
	$\overline{v} = \frac{1}{\lambda} = \frac{1}{6 \times 10^{-7.3}} = \frac{0.16 \times 10^7 \text{ m}^{-1}}{6 \times 10^6 \text{ m}^{-1}}$
_	$v = c = 3 \times 10^8 \text{ m/s}$
	$\lambda = \frac{5 \times 10^{-7} \text{ m}}{6 \times 10^{-7} \text{ m}}$
	$= 0.5 \times 10^{15} \text{ Hz}$
	$= 5 \times 10^{14} \text{ Hz}$
_	= 5 X10 Hz
	Who should be
-	The electromagnetic spectrum:
-	MODULE 1 (PØ 10%)
-	on the basis of increasing wavelength. Cosmic ray's < 1 rays < x-rays < rettra-violet- (visible spectrum < Ingrared < Micro wave <
-	Cosmic Hays & Hays & x-Hays & Metra-violet
	Radio wave.
-	Radio wave,
	Den ak'e Organizara Nazara
	Planck's quantum theory:
	MODULE 1 (Pg 168)
-	The radiant energy is emitted or absorbed
	discontinuously by a body in the form of small discrete parti packects of energy called
	small districte partit packects of energy called
	quantum.
•	In case of light, the smallest packet is 'photon'.
	energy of 1 mole quantum:
_	E = Nhv = Nhc Imol-1 or erg mol-1
	λ
	$N = 6.023 \times 10^{23}$
	S'mol-1' signifies that, we need to calculate in? Imole so instead of n, it will be N = 6.023 × 10 ²³ Aim4aiims.
24	Limole so instead of n, it will be N = 6.023 x 1023 Aim4aiims.i

.23.	3×108 photons of a certain light radiation are found to produce 1.5 souls of energy. Calculate the wavelength of the radiation. (m)
	$\lambda_2 = 6000 \text{ A} = 2000 \text{ A}$
	3E 6000 3 6000
	$E = \lambda 2 \Rightarrow 1 = \lambda 2$
	22
	$E_2 = \mathcal{U} \qquad E_2 \qquad \lambda_r$
	$E_1 = kc$ $\lambda_1 \therefore E_1 - \lambda_2$
	V Q
	of a photon whose energy is 3E.
.22.	is E' is 6000 A, then find out the waveleng
	$= 19.878 \times 10^{-7} = 12.4 \times 10^{-7} \mathrm{m}.$
	1.6 × 10
-	$\frac{\lambda}{1.6 \times 10^{-34} \times 3 \times 10^8}$
	λ ε
	$: E = hc : \lambda = hc$
	1 electron volt (ev) = 1.6×10^{-19} J
Q.21	energy is a electrion volt.
	λcm
	E = 2.859 (caloxie mol-1)

	$\lambda = 6.626 \times 10^{-34} \times 3 \times 10^{8} \times 3 \times 10^{8}$
	1:5
	= 6.626 x 9 x 10 - 18 m
	1.5
	$= 39.7 \times 10^{-18} \text{ m}$
24	A IND width buth with
X I	A 100 watt bulb emits monocromatic light of
	wavelength 1986 nm. calculate the na of photon
	emitted per sec by the bulb.
	1 watt = 1 T/sec
	$100 \text{ watt} = 100 \text{ J/sec.}$ $1 \text{ nm} = 10^{-9} \text{ m}$
	:. 1886 nm = 1986 x 109 m
	E = nhc
	100 100 100 100 100 100 100 100 100 100
	$100 = n \times 6.626 \times 10^{-34} \times 3 \times 10^{8}$ 1986×10^{-9}
	$1986 \times 10^{-9} \times 10^{2} = 6.626 \times 3 \times 10^{-26} \times n$
	$\frac{1986 \times 10^{-7}}{1986 \times 10^{-7}} = 6.626 \times 3 \times 10^{-26} \times 10^{-26}$
	$1986 \times 10^{-7} = 19.86 \times 10^{-26} \times n$
	$19.86 \times 10^{-5} \times = 10^{-26} \times 19.86 \times n$
	$i. n = 10^{-5} = 10^{26}$
	$10^{-26} 10^{5} 10^{5} 10^{21}$
-	$n = 10^{200} = 10^{20}$
-	Unit convention.
	1 calonie = 4.2 J
	1 Toule = 107 erg
0	1 electron volt = $1.6 \times 10^{-19} \text{ J}$
	E=nhc, unit of 2 and c should be in m
	and m/s respectively and unit of h
26	should be according to energy Aim

	Bohr's atomic model:
	MODULE 1 (Pg 169)
	Some important formulae:
-	Coulombic force: Kg192
	centrifugal force: mv² r
	Angular momentum: mrs
	Bohr's Postulates:
	MODULE 1 (PO. 169).
	Et includes six postulates.
•	nth excited state will represent (n+1)th energy
	DE = Enigher - Elower = energy of a quantum.
•	During transition, defent amount of energy
	is released and absorbed.
	Application of Bohr's model
<i>i</i>)	Radius of various orbits (shell):
711	MODULE 1 (Pg 170)
	$A_{n} = 0.529 \times n^{2} A$
	Z · · · · ·
	where, n = no of shells and
- 1	z = atomic no.

	case T: If n is constant, rd 1
	ruse 1. of ne is when and n
	$\therefore \mathcal{H}_{l} = Z_{2}$
	H2 Z1
	case II: If z is constant, ndz
	$H_{2} = (n_{1})^{2}$ $H_{2} = (n_{2})^{2}$
	Case III: neither (n) non (z) is constant
	$\therefore H_{1} = (n_{1})^{2} \times Z_{2} \text{of} (n_{1})^{2} \times Z_{2}$ $H_{2} (n_{2})^{2} Z_{1} Z_{1} (n_{2})^{2}$
25.	If the radius of the 1st orbit of hydrogen atom is x A, then the radius of its 3 rd.
_	orbit will be.
	$\Lambda_{l} = \left(n_{l}\right)^{2}$
	1 12 (N2)
	$\frac{\Lambda_2}{\Rightarrow} \frac{(N_2)^2}{(N_2)^2} = \frac{1}{(N_2)^2}$
	$\frac{\lambda_2}{\Rightarrow} \frac{(N_2)^2}{x_2 - (1)^2} = \frac{1}{9}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{\lambda_2}{\Rightarrow} \frac{(N_2)^2}{x_2 - (1)^2} = \frac{1}{9}$
6	Az $(n_2)^2$ $x = (1)^2 = 1$ $x_2 = (3)^2 = 9$ $x_2 = 9x$ $x_3 = 2x$ $x_4 = 2x$ $x_5 = 2x$ $x_6 = 2x$ Calculate the radius of 3rd orbit of $x_6 = x_6$
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Az $(N_2)^2$ $\Rightarrow x = (1)^2 = 1$ $x_2 = (3)^2 = 9$ $\therefore M_2 = 9\pi$ $\therefore \text{ radius of 3rd of bit} = 9\pi$ Calculate the radius of 3rd orbit of Li^{+2}
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

0.27	calculate the ratio of radius of 2nd to 3nd
	orbit for hydrogen atom.
	$\frac{1}{2}$
	H_2 $(n_2)^2$
-	$\mu_1 = (2)^2 = 4 = 4:9.$
	H_2 $(3)^2$ q .
	H ₁ : H ₂ = 4:9
Q.28	rakulate the radius ratio of 3rd orbit of
	hydrogen atom to 2nd orbit of Het
	$\frac{y_1}{y_1} = \frac{(n_1)^2}{x^2} \times \frac{z_2}{x^2}$
	\mathfrak{H}_{2} Z_{1} $(n_{2})^{2}$
	$= (3)^2 \times 2 = 9 \times 2 = 9$
	1 (2)2 4 2
	: H1: H2 = 9:2
Q.29	calculate the diameter and circumperence
	of 3rd orbit of Li+2
	$x_n = (0.529 \times n^2) \tilde{A}$
	z /
	$= 0.529 \times (3)^2 = 0.529 \times 9$
	$= 0.529 \times (3)^2 = 0.529 \times 9$ 3.
	2
	$y_{n} = 1.587 \text{ Å}$
	3. 3
	3. 3. 3. 4n. = 1.587 \mathring{A} d'ameter = $\ln x = (1.587 \times 2) \mathring{A} = 3.174 \mathring{A}$
	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
	3. $y_n = 1.587 \text{ Å}$ $diameter = x_n \times 2 = (1.587 \times 2) \text{ Å} = 3.174 \text{ Å}$ $circumperence = 2\pi x$. $= (2 \times 3.14 \times 1.587) \text{ Å}$
	3. $y_n = 1.587 \text{ Å}$ $diameter = r_n \times 2 = (1.587 \times 2) \text{ Å} = 3.174 \text{ Å}$ $circumperence = 2\pi x$. $= (2 \times 3.14 \times 1.587) \text{ Å}$

	3 9 : 8
	$2\pi H$ = $2\pi \times 0.529 \times 4 \cdot 2\pi \times 0.529 \times 9:2\pi 0.529 \times 8$
	circumperence of Litz: H: Het
	3 1 2
-	$0.529 \ n^2 - (2)^2 : (3)^2 \cdot (4)^2$ Z 3 1 2
	radius of Li^{+2} : H : He^{+}
_	and 3rd excited state of Het
	excited state of Li+2, 2nd excited state of H
2	Find out the ratio of circumperence of set
	$\# H_1' : H_2 = 8 : 27$
	A2 3 (3) 3 9 27
	$\frac{y_1}{y_2} = \frac{(2)^2}{3} \times \frac{2}{(3)^2} = \frac{4 \times 2}{3} = \frac{8}{9}$
	$\frac{y_1}{\lambda_2} = \frac{(n_1)^2}{2} \times \frac{z_2}{(n_2)^2}$
	$H_1 = (n_1)^2 \times Z_2$
	Litt to 3rd orbit of Het
31	Find out the ratio of radius of 2nd orbit of
	H_2 $(n_2)^2$ $(1)^2$
	$n_1 = (n_1)^2 = (2)^2 = 4:1$
	Ans: iv)
	iv) Both (ii) and (iii)
	ii) N and L iii) L and K
	i) K and L

Q.33	Find out the ratio of radius of 2nd orbit
	Find out the ratio of radius of 2nd orbit of hydrogen to 1st orbit of Li+2 to 3rd orbit of He+.
	Radius of H: Li+2: He+
	Radius of H : Li^{+2} : He^{+} $0.529 \times n^{2} = (2)^{2} : (1)^{2} : (3)^{2}$
	2 1 3 2
	= 4:1:9
	= 24:2:27
9.34.	calculate the angular momentum of an
	electron in 4th Vorbit of Het.
	Angulas velocity = $mvx = nh$ 2π
	=4h=2h
	27 7
ii)	Velocity of electron in Bohn Orbit:
	$V = (2.18 \times 10^6 \text{ z}) \text{ m/s}.$
-	OR
	$V = \left(\frac{2.18 \times 10^8 Z}{n}\right) \frac{\text{cry/s}}{n}$
	where, n = no. of shells and
	z = atomic no.
	Case I: If z is constant, & V & 1
	n

	case II: If n is constant, v & z
	$V_1 = Z_1$ $V_2 = Z_2$
	Case III: neither (n) non (z) is constant.
	$\frac{V_1}{V_2} = \frac{Z_1}{N_1} \times \frac{N_2}{N_2}$
Q. 35	Calculate the natio of velocity of electron in 2nd orbit of Li ⁺² to 3rd orbit of He ⁺
34	$\frac{V_1}{V_2} = \frac{Z_1}{N_1} \times \frac{N_2}{N_2}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
₹.36	Calculate the velocity of an electron in
	3rd orbit of L_{0}^{c+2} $V = \left(\frac{2.18 \times 10^{6} \text{ z}}{n}\right) \text{ m/s}$
	$=$ $\left(\frac{2.18 \times 10^6 \times 3}{3}\right) \text{ m/s}.$
). 37	$= 2.18 \times 10^6 \text{ m/s}.$
	an electron in 1st orbit of H, Het. Lite Bet3 respectively, then pick out the connect
	i) V ₁ < V ₂ < V ₃ < V ₄
32	$(i) V_1 > V_2 > V_3 > V_4$ Aim4aiims.in

	$iii)$ $V_1 = V_2 = V_3 = V_4$
	(v) None of these.
	Ans) i)
	V, ; V2 : V3 : V4
	Z1 : Z2 : Z3 : Z4
	n_1 n_2 n_3 n_4
	: n = constant
	:
	1:2:3:4
	: V1 < V2 < V3 < V4
Q. 38	If V, V2, V3 and V4 are the velocities
	of an electron in 1st, 2nd, 3rd and 4th
	orbit of H atom respectively, then pick ou
	the convect relation.
	i) V1 4 V2 4 V3 4 V4
	$i\dot{v}$ $v_1 > v_2 > v_3 > v_4$
	$(ii) V_1 = V_2 = V_3 = V_4$
	iv) None of these
	Aus) ii
	V1: V2: V3: V4.
	': z = constant
-	2 V d 1
	n
	: V, > V2 > V3 > V4
8-39.	If v, v2, v3 and v4 are the velocities
	of an electrons in 1st orbit of H, 2nd
77.77	orbit of He, 3rd Orbit of Li+2 and 4th

	i) V1 < V2 < V3 < V4
	(i) \vee_1 \rangle \vee_2 \rangle \vee_3 \rangle \vee_4
	$(ii) \forall_1 = \forall_2 = \forall_3 = \forall_4$
	iv) None of these
	Ans) (ii)
	V,: V2: V3: V4
	Here, $Z = constant$.
	$\frac{1}{1} \cdot \frac{V_1}{V_2} \cdot \frac{V_2}{V_3} \cdot \frac{V_4}{V_4} = K$
	n_1 n_2 n_3 n_4
	$V_1 = V_2 = V_3 = V_4$
ari)	Total energy of electron in Bohr model:
	Potential energy: - KZe2
	я
	Kinetic energy: KZe²
	24
	Jotal energy: Potential energy + Kinetic energy = -KZe² + KZe²
	r 2r
	$= -kZe^2$
	2H .
	$T.E = -KE^{-} = PE$
	2
	$T.E = (-2.18 \times 10^{-18}) \times z^2$ I/ Atom
	n^2
	$= -13.6 \times z^2 \text{ eV/Atom}$
	n^2
	$E(energy) d - z^2$
4	
4	Aim4aiims

$= -13.6 \times 1^{2}13.6 \text{ eV/atom.}$	
$= -13.6 \times 1^{2} = -13.6 \text{ eV/atom.}$ $2^{2} \qquad 4$	
= -3.4 ev/atom	
Energy of an electron in 3rd orbit $= -13.6 \cdot \times 1^2 = -13.6 \cdot \times 1$ eV/ atom	
3 ² 9	
= -1.51 eV/atom	
Energy of an electron in 4th orbit = $-13.6 \times 1^2 = -13.6 \text{ eV/atom}$	
42 16	
= -0.85 ev/atom	
Energy of an electron in 5th orbit $= -13.6 \times 1^{2} = -13.6 = eV/atom$ $5^{2} = 25$	
5 ² 25	
=- 0.54 ev/ atom	
Energy of an electron at infinity.	
$\int_{-13.6 \times 1^2}^{12} = 0$	
Energy of an electron at infinity. $= -13.6 \times 1^{2} = 0$ $0.57 \text{ ev} \text{ acm}$ $= -13.6 \times 1^{2} = 0$	
Injuity	
$(n=\infty)$	0
4th excited state (0)	
(n=5)	-0.54 6
3rd excited state(N)	
(n=4)	-0.85e
2nd excited state(M)	1.5141
(n-3)	-1.510
1st excited state (L)	20200
(n = 2)	-3.4 es
ground state (K)	-
(n=1) Most Stable	-13.6 eV
	um ene

Aim4aiims.in

35

	$T.E. \propto -Z^2$
	n²
	Case I: If n is constant, $E \alpha - z^2$. $\# Z \uparrow \Rightarrow E \lor$
	$E_1 = (z_1)^2$
	E_2 $(Z_2)^2$
	sase TI: If z is constant, E 2-1
	n^2
	in n↑ ⇒ E↑
	$\therefore E_1 = (n_2)^2$
	E_2 $(n_i)^2$
	case III: neither (n) nor (Z) is constant
	$\mathcal{E}_1 = (z_1)^2 \times (n_2)^2$
	$E_2 (n_i)^2 (z_i)^2$
Q. 40.	Ealculate the energy of an electron in 1st 2nd, 3rd, 4th and 5th orbit of H atom. and
	also calculate its energy at infinity.
	# Energy of an electron in 1st outit:
	n^2
	$= -13.6 \times 1^{2} = -13.6 \text{ eV/atom.}$
C	12
#. 	Energy of an alectron in 2nd Orbit: Aim4aiims.

	Energy difference:
	0 0
0	(K-L) shell: -13.4-(-13.6) = 13.4-13.4 = 10.2 eV
0	(L-M) shell: -1.51-(-3.4) = 3.4-1.51 = 1.89 eV
•	(M-N) shell: -0.85 - (-1.51) > 1.51 - 0.85 = 0.66 eV
0	(N-0) shell: -0.54 - (-0.85) = 0.85 - 0.54 = 0.31 eV
a)	Ionization energy:
-	Lonization energy: MODULE 1 (Pg 169)
	Minimum amount of energy required to remove
	An electron prom its ground state to infinity.
	$IE = E_{\infty} - E_{1}$
	= $0 - E_1$ = $-E_1$ (Kinetic energy in 1st st
	For eg: In case of hydrogen atom.
	in 1st shell, $-(-E_1) = -(-13.6)$ eV
	= + 13.6 eV
	· Ianization energy is equal to the energy
	of an electron in its ground state with
	of an electron in its ground state with a reverse sign.
<u> </u>	
	· Ionization energy is always positive (+ve)
b)	Seperation energy
-	MODULE 1 (Pg 170)
	Minimum amount of energy required to
	remove an electron prom its excited
	state to infinity is called seperation energy

Aim4aiims.in

37

	$SE = E_{\infty} - E_{n} \left[n = 2, 3, 4, 5 \dots \right]$
	$0-E_n=-E_n$
	For eg: In case of hydrogen atom.
	For eg: In case of hydrogen atom 1st $S.E = -E_2 = +3.4 \text{ eV}$
	$2nd \ 8.E = -E_3 = + 1.51 \ eV$
	A #1
	. The energy of an electron in that state
	from which it is removed with a reverse
	sign.
,	· seperation energy is aways positive (+ve).
c)	Excitation Energy:
	Excitation Energy: MODULE 1 (Pg 170)
	The amount of energy required to shift an
	The amount of energy required to shift an electron from ground state to any other
	excited state
	$EE = E_n - E_1 \left[n = 2, 3, 4, 5 \dots \right]$
	7
	Fox eg: In case of hydrogen atom
	1st EE = E2-E, = -3.4-(-13.6)
	= 13.6 - 3.4 = 10.2 eV
	· ·
	2nd EE = E3-E1 = -1.51-(-13.6).
	2nd $EE = E_3 - E_1 = -1.51 - (-13.6)$. = 13.6 - 1.51 = 12.09 eV
	2nd $EE = E_3 - E_1 = -1.51 - (-13.6)$. = 13.6 - 1.51 = 12.09 eV 3nd $EE = E_4 - E_1 = -0.85 - (-13.6)$.
*	2nd $EE = E_3 - E_1 = -1.51 - (-13.6)$. = 13.6 - 1.51 = 12.09 eV 3nd $EE = E_4 - E_1 = -0.85 - (-13.6)$.

	for any particular species: (applicable of all)
•	TEI L TE2 L TE3 L TE4
	KE, > KE2 > KE3 > KE4
	PE, < PE2 < PE3 < PE4
	E_2-E_1 > E_3-E_2 > E_4-E_3 > E_5-E_4
*	TRICKS ? (for any species)
<i>i</i>)	$E_n = E_n \times z^2$
	(any species) (Hatom)
ii)	$\Delta E = (E_2 - E_1) = \Delta E (E_2 - E_1) \times z^2$
	(any species) (H atom)
เ๊น์)	$E_n = E_1$ $\frac{*}{n^2}$ Do not use either of the tricks in ratio
Q. 41.	Salculate the energy of an electron in 2nd orbit of Li^{+2} . $E = -13.6 \times z^213.6 \times 9$ eV
	n ² 4
	= -30.6 en of
	Using truck (1),
	$\frac{E_2}{(L_{\nu}^{c+2})} = \frac{E_2 \times z^2}{(H)}$
	= -3.4 × 9 = -30.6 eV
	= -3.7 ~ 7 - 20.6 eV
Q.42	The energy of an e^- in 1st Dubit of H-atom is $-E eV$. Labourate the energy in 3rd Onbis $E_1 = (n_2)^2$

	-E = 9
	E_2 1
	$E_2 = \frac{-E}{9} OR$
	Using trick (iii). $En = E_1 \Rightarrow E_2 = -E$
	$\frac{\sqrt{t_1 = E_1}}{n^2} \Rightarrow \frac{E_2 = -E}{q}.$
	n n
	Calculate the difference of energy between
	3rd and 2nd Orbit of Het.
-	$\Delta E = E_3 - E_2$
-	$= -13.6 \times 4 - (-13.6 \times 4)$
	$= -13.6 \left[\begin{array}{c} 4 - 4 \\ 9 \end{array} \right]$
	= -13.6 x 16-36 = -13.6 x (-20)
	36 36.
	= 13.6 x 5 - 7.56 eV. OP
	9
	Using trick (ii).
_	$\Delta E \left(3-2\right) = \Delta E \left(3-2\right) \times Z^{2}$
	Het H
	$= -1.51 - (-3.4) \times 4$
-	= (3.4 - 1.51)×4 = 7.56 eV
4	Colourate the water of Ar bateroom and and
	Sud orbit of Het to 2nd outit of Let and
	1st Orbit of Li+2
	$F_{2}-F_{2}=-13.6\times z^{2}/n^{2}+13.6\times z^{2}/n^{2}$
	$E_{3}-E_{2} = -13.6 \times z^{2}/n^{2} + 13.6 z^{2}/n^{2}$ $E_{2}-E_{3} = -13.6 \times z^{2}/n^{2} + 13.6 z^{2}/n^{2}$

_	$\Delta E_1 \left(E_3 - E_2 \right) = -13.6 \times 4 + 13.6 \times 4$
	(He+) 9 4
	$\Delta E_2 (E_2 - E_1) = -13.6 \times 9 + 13.6 \times 9$
	(Li+2) 4
	$E_3 - E_2 = -4 + 1$
	E_2-E_1 9
	-q+q
	4
	$\frac{5}{9} \times \frac{4}{27} = \frac{20}{243}$
	$\Delta E (He^+) = 20 \Rightarrow 20:243.$
	$\Delta E \left(Li^{+2} \right)$ 243
0.45.	salculate the energy of an electron in
	ground state of H. Het and Li+2
	h /
	$E_1(H) = -13.6 \times 1 = -13.6 \text{ eV}$
•	growing state of H, He^{+} and Li^{+2} $E_{1}(H) = -13.6 \times 1 = -13.6 \text{ eV}$
	$E_1(H) = -13.6 \times 1 = -13.6 \text{ eV}$ $E_1(He^+) = -13.6 \times 4 = -54.4 \text{ eV}$
	$E_1 (He^+) = -13.6 \times 4 = -54.4 \text{ eV}$
	<u> </u>
	$E_1 (He^+) = -13.6 \times 4 = -54.4 \text{ eV}$ $E_1 (Li^{+2}) = -13.6 \times 9 = -122.4 \text{ eV}$
	$E_1 (He^+) = -13.6 \times 4 = -54.4 \text{ eV}$
	$E_{1} (He^{+}) = -13.6 \times 4 = -54.4 \text{ eV}$ $E_{1} (Li^{+2}) = -13.6 \times 9 = -122.4 \text{ eV}$ $Calculate the ionization energy of H, He$
	E_{1} (He ⁺) = -13.6 × 4 = -54.4 eV E_{1} (Li ⁺²) = -13.6 × 9 = -122.4 eV Calculate the ionization energy of H, He Li ⁺² . -(-E ₁) _H = -(-13.6 eV) = +13.6 eV
	$E_{1} (He^{+}) = -13.6 \times 4 = -54.4 \text{ eV}$ $E_{1} (Li^{+2}) = -13.6 \times 9 = -122.4 \text{ eV}$ $\int \text{Calculate the ionization energy of } H, He$ $Li^{+2}.$
q.46	E_{1} (He ⁺) = -13.6 × 4 = -54.4 eV E_{1} (Li ⁺²) = -13.6 × 9 = -122.4 eV Calculate the ionization energy of H, He Li ⁺² . -(-E ₁) _H = -(-13.6 eV) = +13.6 eV
q.46	$E_{1} (He^{+}) = -13.6 \times 4 = -54.4 \text{ eV}$ $E_{1} (Li^{+2}) = -13.6 \times 9 = -122.4 \text{ eV}$ $\text{Salculate the ionization energy of } H, He$ $Li^{+2}.$ $-(-E_{1})_{H} = -(-13.6 \text{ eV}) = +13.6 \text{ eV}$ $-(-E_{1})_{He^{+}} = -(-13.6 \times 4) = +13.6 \times 4$ $= +54.4 \text{ eV}$
q.46	$E_1 (He^+) = -13.6 \times 4 = -54.4 \text{ eV}$ $E_1 (Li^{+2}) = -13.6 \times 9 = -122.4 \text{ eV}$ Calculate the ionization energy of H, He Li^{+2}. $-(-E_1)_H = -(-13.6 \text{ eV}) = +13.6 \text{ eV}$ $-(-E_1)_{He^+} = -(-13.6 \times 4) = +13.6 \times 4$

2.47	calculate the energy of an e in III ad
	calculate the energy of an e in III nd excited state of Li+2
	$E = -13.6 \times 2^{2}$
	n^2
9	= -13.6 x 9 = -7.65 eV
	16
Q. 48	calculate the 2nd excitation energy of Het.
	2nd excitation energy = E3-E1
	$\Delta E \left(E_3 - E_1 \right) = -13.6 \times 4 - \left(-13.6 \times 4 \right)$
	= +13.6 x4 - 13.6 x 4 9.
	9.
	$= 13.6 \times 4 \left[\frac{1-1}{9} \right] = 13.6 \times 4 \times 8$
	[9] 9
	= 1.51 × 32 = 48.36 eV 02
	Using trick (ii) $\Delta E(3-2) = \Delta E(3-2) \times Z^{2}$
	He ⁺ H
	= 12.09 x 4 = 48.36 eV
0.49	How much minimum energy should be absorbe
	by an e of H atom in ground state to
	reach the excited state.
a)	13.6 eV
6)	3.4 eV
c)	12.09 eV
d)	10.2 eV
	Ane) d)
	1st excited state = E2

0.50	In which of the collection of the
- Cj. 33	In which of the following condition transition minimum energy is released?
3)	n=1 to $n=2$
T4)	$n=1$ to $n=\infty$
iii)	n = 3 to $n = 1$
(v)	n = 3 to $n = 2$
	Ans) iv)
	Released: transition from higher energy level
	to lower renergy level.
Q.51.	In which of the following transition, radiated
53	of maximum energy is absorbed?
i) ii)	n = 1 to $n = 2$.
iii)	$n = \infty$ to $n = 1$
(v)	$n = 1$ to $n = \infty$
	Ans) (v)
	Absorbed: transition from lower energy level
	to higher energy level
Q.52	The ionization energy of an atom is 100 ev
ė)	then calculate.
ii)	Energy of 2nd orbit.
	Amount of energy required to excite an e-
	from n = 1 to n = 2
ív) .	calculate the frequency of photon absorbed
	when e excites from n=1 to n=2
	IE = 100 eV
	- E1 = 100 ex (: IE = - E1)

i)	$E_{\rm H} = E_{\rm L} = -100 = -25 {\rm eV} (E_2).$
	n^2 4
ii)	1st excited state = E2-E1
	= -25 eV - (-100 eV).
	= 100 eV - 25 eV = 75 eV
íii)	$E_2 - E_1 = 75 \text{eV}$
(v)	$\Delta E = hv$
	:. $v = \Delta E = (E_2 - E_1)(1.6 \times 10^{-19})$
	n 6.626 × 10 ⁻³⁴
	U = 75 x 1.6 × 10 15
	6.626
	= 18 × 10'5 Hz
. 53.	The imization energy of H is 13×106 I mol-1
	The ionization energy of H is 1.3×106 I mol-1 Calculate the purguency, required to excite
	an e from n=1 to n=2
	$TE = 1.3 \times 10^6 \text{ J nuol}^{-1}$
	: · E = -1.3 × 10 5 mol-1 [::IE = -E,]
	Using trick (iii)
	$E_{\rm H} = E_{\rm L} = -1.3 \times 10^6$
	n^2 4
	$E_2 = -0.328 \times 10^6 \text{ J mol}^{-1}$
	: Required energy = E2 - E,
	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
	= (-0.328 × 106) - (-1.3 × 106) 1 mol-1
	= 1.3 × 106 - 0.328 × 106
	= 10° (1.3 - 0.328)
	$= 0.984 \times 10^6 \text{ J mol}^{-1}$
	S. 10 1 NIOC
02.54	If the 2nd exciation energy of an atom is
-	1210 eV, then find out its atomic no.
	1210 eV. then find out its atomic no.

	Using trick (ii)
	Using trick (ii), $\Delta E(3-1) = \Delta E(3-1) \times z^{2}$
—Ш-ассыя	'z' H.
	$1210 = -1.51 - (-13.6) \times z^{2}$
	1210 = 13.6 - 1.51 X z2.
	$z^2 = 12.09 \approx 100$.
	1210
	$z = \sqrt{100} = 10.$
	Hence, atomic no = 10
1.55	calculate the potential energy of an e
	in Ina excited state of Het
	TEn = TEn x Z ² (Using trick i.)
	Het H
	· = -1.51 x 4 = -6.04 eV
	PE = TE
	2
	. PE = 2TE
	$= 2 \times (-6.04) = -12.03 \text{ eV}$ and.
	KE = -TE = -6.04 eV
Q. 56	If the potential energy of an e in IInd oubit is for Li+2 is n, then find out the total energy for He+ in the 2nd orbit.
	oubit a for his is no, then find out the
	total energy for He in the 2nd orbit.
	: PE = TE
	$(PE_2) = x$
	Li ⁺²
	$\therefore (FE_2) = \alpha$
	Li+2 2
	Using, $E_1 - (Z_1)^2$ $= (Z_2)^2$

	> E1 (Li+2) = 9
	E_1 (He ⁺) 4
	$\Rightarrow \frac{\chi/2}{2} = 9$
	E, (He+) 4
	$E_{1}(He^{+}) = \frac{\chi}{2} \times \frac{4 \times 1}{9} = \frac{2\chi}{9}$
	(TE2) He+ = 2x
	9
Q.5 7	calculate the 1st seperation energy for Li^{+2} $SE = -(-E_h)$, where $n = 2$
	= - (-E2) (1st seperation energy).
	$= + E_2$
	(TE2) = (TE2) x Z2 (Using trick i)
	Li+2 H
	$= -3.4 \times 9. = -30.6 \text{ eV}$
	: Let seperation energy = - (-TE2) Li+2
	V = -(-30.6)
	= 30.6 eV
Q.58	The potential energy of an e- in Hatom
	is -6.8 eV then determine that the e
	will be present in which excited state.
	PF = -6.8 OV
	: TE = -6.8 = -3.4 ev (: TE = PE)
	2
	$E_n = -13.6 \times z^2$: $n^2 = -13.6 \times 1 = 4$
	TANK TANK
	$n^2 = 4$: $n = \sqrt{4} = 2$, $n = 2$, 1st E.S.
	Using trick i,
16	TEV = -6.8 = -3.4 eV, (1st excited state)
46	Aim4aiims.in

	Spectrum:
	when a radiation is passed through a
	prism, it splits into radiations (electro-
	magnetic waves) of various wavelength.
	when these radiations are made to fall
	on a photographic film, the impression produced is known as spectrum.
	partie a krown as spectrum.
	Spectrum
-	Emmission Absorption
	Continuous discontinuous line Band
	Continuous discontinuous line Band.
	line Band.
7-44	
i)_	Emmission spectrum:
-	When a radiation from eight-emiting
	source like sun, bub, burner, A gas in
	the discharged tube, a heated substance
	etc is passed through a prism and then
	the impussion so obtained is known as
	the emmission spectrum
_	704 eg:
	The spectrum of sunlight (white light) is
	a continuous emmission spectrum.
	The spectrum of atoms is a line emmission
_	spectrum. (discontinuous)
Aim4aiims.in	The spectrum of molecule is a band
,	emmission spectrum (discontinuous) 47

*	The spectrum of an element is the
	the spectrum of an element is the
	fingerprint of that element i.e. the spectrum of two element can't be same.
	The second of th
*	The spectrum of same electron species
	can be same similar but can't be same
·ii)	Absorption spectrum:
	when a radiation is passed through an
	absorbing sample and then it is made
	to fall pass through a prism and then
	made to fall upon a photographic film
-	The impression obtained is known as
	absorption spectrum.
0	when a radiation is passed through
	an atomic gas, then the obtained spectrum
	is absorbed line spectrum.
•	when a radiation is passed through a
	molecule, then the obtained spectrum is
	absorbed band spectrum.
*	In absorption spectrum, dark lines
	are obtained in otherwise bright spectrum
*	These dark line corresponds to the
水.	wavelength absorbed by the sample:
7.	The absorbed spectrum can be called
	the photo-negative of the initial spectrum
	light (Bright) (dark)
8	Educe (Bright) (auck) Absolption franciscon April Ap

	Hydrogen spectrum (emmission line) MODULE 1 (Pg 172)
	Total no. of spectral line (TSL) where e- tends from no to no (emmission line)
	Table from 12 to 14 Constitution
	$: TSL = (n_2 - n_1) (n_2 - n_1 + 1)$
	2.
11/2	
	For any transition:
i)	1st line is called 'L' line
	$n_2 = n_1 + 1$
ii)	2nd line is called 'p' line
iy	$l. n_2 = n_1 + 2$
iii)	3rd line is called 'p' line
	$n_2 = n_1 + 3$.
iv)	For any x' line:
	$n_2 = n_1 + \alpha$
•	land the state of
•	Last/Marginal/Limiting line:
	io
	Criteria/ Let line and last line
	Basks:
i)	Energy: (E): Minimum Maximum
ii)	Frequency: (v): Minimum Maximum
iii)	wavelength: (1): Maximum Minimum

Click Here to Buy From Amazon

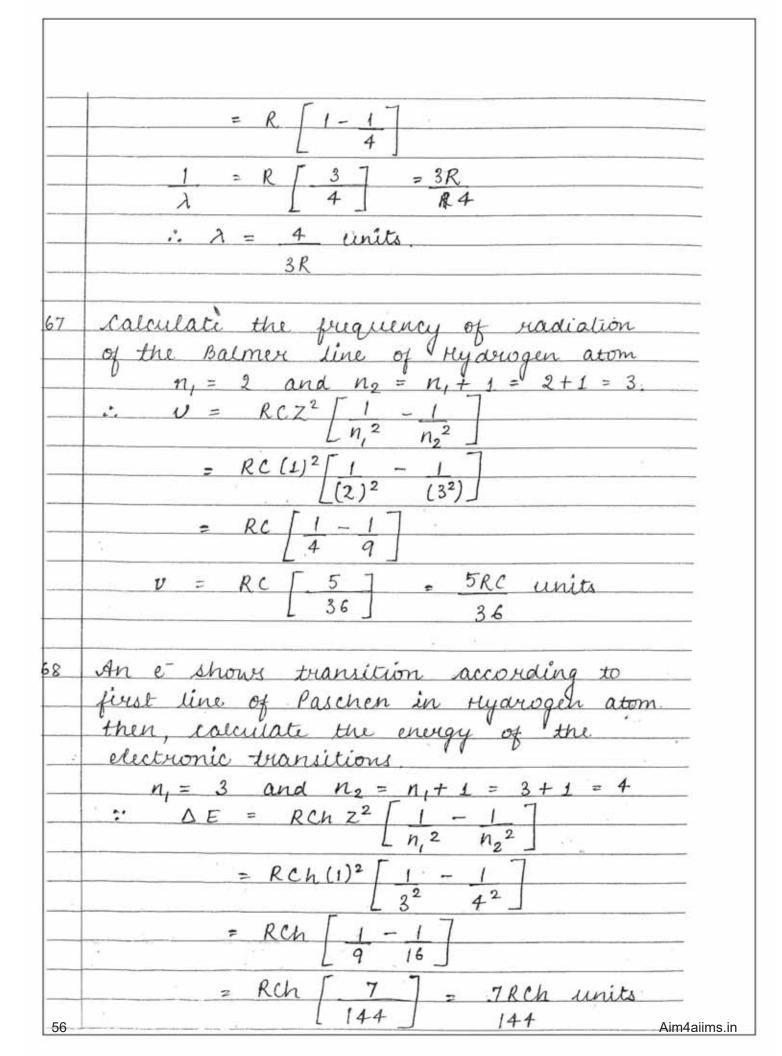
9.	calculate total no of spectral lines when an
	e- transits from 6th energy level to ground
	state. Also calculate the no of lines in
	each series and also determine the no. of
	lines formed in ultra, visible and Ingrared.
	region
	$TSL = (n_2 - n_1)(n_2 - n_1 + 1)$
	, 2
	= (6-1)(6-1+1)
	2
	= 5 x 6 = 15 lines.
	2
	No. of lines in each series:
<i>i</i>)	Lyman's series (UV regions): " n2 =n1+1
	$n_1 = n_2 - 1 \Rightarrow 6 - 1 = 5$
ii)	Balmer's series (visible regions): : n2 = n,+2
	$n_1 = n_2 - 2 \Rightarrow 6 - 2 = 4$
iii)	Paschen's series (IR region): n2 = n, +3.
	$n_1 = n_2 - 3 \Rightarrow 6 - 3 = 3$
ív)	Brackett series: $n_1 = n_2 - 4 \Rightarrow 6 - 4 = 2$
v)	Pfund series: n,=n2-5 > 6-5=1
vi)	Humphery series: n= n2-6 = 6-6 = 0
	Total number of lines in ultra region: 5
	Total number of lines in visible regions: +
	Total number of lines in Engraved regions:
	3+2+1=6
60.	calculate total no of spectral line when an
10.	e- transits from 7th energy lever to 1st excited.
	state. Also, calculate the no of lines in each
50	series and also determine the number of lines. Aim4aiin
30	/ Alm4alir

	formed in utra, visible and Infrared region
	$T.S.L = (n_2 - n_1) (n_2 - n_1 + 1)$
	2
	= (7-2) (7-2+1)
	2
	= 5 x 6 = 15 lines
	2
	No of lines in each series:
<i>i</i>)	Lyman's series: n= n2-1 = 0 (Lyman's series)
;;)	Lyman's series: $n_1 = n_2 - 1 = 0$ (Lyman's series) Baloner's series: $n_1 = n_2 - 2 = 7 - 2 = 5$
	Paschen's series: n, = n2-3 = 7-3 = 4
	Brackett series: $n_1 = n_2 - 4 = 7 - 4 = 3$
	Pfund series: $n_1 = n_2 - 5 = 7 - 5 = 2$
vil	Humphery series: n,= n2-6 = 7-6 = 1
***	11019 acy 2010 11, 112 6
0	Total no. of lines in ultra regions = 0
0	Total no. of lines in visible regions = 5
	Total no of live in languard was one
	Total no. of lives in Ingraved regions = 4+3+2+1=
Q.61	calculate total no. of spectral line, when an
	e transmits from 6th energy level to 3rd
*	energy levels. Also calculate the no. of lines
	in each series and also determine the no of
	lines formed in ultra, visible and Ingraved
	regions.
	$T,SL = (n_2 - n_1) (n_2 - n_1 + 1)$
	2
	= $(6-3)(6-3+1)$
	2 (0 3) (0 3 7 1)
	2 Y A A AP
14aiims.in	= 3 x 4 = 6 lines 2 51

	No of lines in each series:
	Lyman's series: n1 = n2-1 = 0 (Lyman's series)
	Balmer's series: n, = n2 -2 =0 (Balman's series)
	Paschen's series: $n_1 = n_2 - 3 = 6 - 3 = 3$.
	Brackett's series: n1 = n2-4 = 6-4 = 2
	Pfund series: n1 = n2-5 = 6-5 = 1
	Mumphery surles: n, = n2-6 = 6-6=0.
	V
0	No. of lines in Metra regions: 0
9	No of lines in visible regions: 0
0	No of lines in Ingraved regions: 3+2+1=6.
2	An e- in hydrogen jumps from higher orbit
	an e in hydrogen jumps from higher orbit (n2) to ground state taking multiple transition
	If the total no. of lines formed in the
	spectrum are 21. then find out the value of
	No ?
	$T.SL. = (n_2 - n_1) (n_2 - n_1 + 1)$
	2
	$21 = (n_2 - 1) (n_2 - 1 + 1)$
	2
	$42 = n_2 (n_2 - 1)$
	$(n_2)^2 - n_2 - 42 = 0.$
	$(n_2)^2 - 7n_2 + 6n_2 - 42 = 0.$
	$n_2(n_2-7)+6(n_2-7)=0$
	$n_2 = -6$ and $n_2 = 7$
	$n_2 = -6$ (not possible)
	n ₂ = -6 (not possible) : No. of lines can't be negative.
	0
	$n_2 = 7$.

Aim4aiims.in

52


Q. 63.	Determine the transitions made by the e-
-,	from no energy level to no energy level for
	the following lines.
<i>i</i>)	V
ĩi)	I line in the Brackett's series
űi)	a line in the Humphery's series.
iv)	p line in the Paschen's series
v)	4 th line in the Balmer's series.
vi)	last line in the Pfund series.
<i>i</i>)	$n_2 = n_1 + 5$ (: $n_1 = 1$ for Lyman series
	$= 1 + 5 = 6 \cdot (6 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1$
ii)	$n_2 = n_1 + 3$. (: $n_1 = 3$ for Brackett series) = $4 + 3 = 7$ (7th to 4th)
iii)	n2 = n, +1 (" n, = 1 for Humphery series
- W)	= 6 + 1 = 7 (7th to 6th)
iv)	$n_2 = n_1 + 2$ (: $n_1 = 2$ for Paschen series)
	= 3/1+2=15 (5th to 3rd)
v)	n2 = n, + 4 (: n, = + jox Balmer: series)
	= 2+4=6 (6th to 2nd).
vi)	no = n, + :5 (: last line in Pfund series)
	$= 5 + \infty = \infty (\infty \text{ to 5th})$
*	In the absorption spectrum of hydrogen
	only dark lines of lyman's series are
	obtained. This verifies / shows that an
	e does not make multiple transitions
	during excitations.
	0 (N) 4
	(M) 3
	(L) 2
	(K) 1

0-64	If an atom contains 5 permitted orbit,
	then find out the total no. of lines
	formed in emmission and absorption
	spectrum
	$n_2 = 5$ and $n_1 = 1$.
	$T.S.L = (n_2 - n_1) (n_2 - n_1 + 1)$
	2
	= (5-1) (5-1+1)
	2
	= 4 x 5 = 10 lines.
	2
•	Total no. of lines in emmission spectrum:
	The state of the s
	= Lyman's servies = (n2,-1)
	= 5-1 = 4 lines
	= 5-1 = 4 lines.
8.65	
3.65	In the emmission spectrum of hydrogen,
.65	
7.65	In the emmission spectrum of hydrogen, following lines are obtained.
7.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) 4
g.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) (M) (M) (M) (M) (M) (M) (M)
1.65	In the emmission spectrum of hydrogen, following lines are obtained: (N) (M) (M) (K) (K)
7.65	In the emmission spectrum of hydrogen, following lines are obtained: (N) (M) (K) How many of these lines will be obtained.
3.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) (M) (K) How many of these lines will be obtained in absorption spectrum?
.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) (M) (E) (K) How many of these lines will be obtained in absorption spectrum? No of lines obtained in absorption spectrum =
3.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) (M) (K) How many of these lines will be obtained in absorption spectrum? No of lines obtained in absorption spectrum = No of lines of Lyman's series.
.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) (M) (K) (K) (K) (K) (K) (K) (K
.65	In the emmission spectrum of hydrogen, following lines are obtained. (N) (M) (K) How many of these lines will be obtained in absorption spectrum? No of lines obtained in absorption spectrum = No of lines of Lyman's series.

Aim4aiims.in

54

	<u> </u>
	Rydberg formula: MODULE 1 (Pg-173)
i)	$\overline{v} = 1 = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
ii)	$v = RCZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
iii)	$E = -RCh z^2 $ n^2
(v)	$\Delta E = RChZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
	where $R = 1.1 \times 10^5 \text{ cm}^{-1}$ or $1.1 \times 10^7 \text{ m}^{-1}$
	$C = 3 \times 10^{8} \text{ m/s}.$ $h = 6.626 \times 10^{34} \text{ J}$
	Z = atomic no., and.
	n, = no. of lower energy level
	n ₂ = no. of higher energy level.
w)	1 = 912 Å.
	R
-	
0.66	line of the luman's series in Hudsonen at
	line of the lyman's series in Hydrogen at $n_1 = 1$ and $n_2 = n_1 + 1 = 1 + 1 = 2$
	$\therefore L = RZ^2 \int_{-1}^{2} L - I = I$
	$\frac{\lambda}{2} \frac{[n_1^2 n_2^2]}{[n_2^2]}$
n4aiims.in	$= R(1)^{2} \begin{bmatrix} 1 & -1 & 1 \\ 1^{2} & 9^{2} \end{bmatrix}$

N 69	An e- shows transition according to
4.07.	first brackett line in Hydrogen atom.
	then calculates its wave no.
	$n_1 = 4$ and $n_2 = n_1 + 1 = 4 + 1 = 5$
	$ \overline{v} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] $
	$= R(1)^{2} \begin{bmatrix} 1 & -1 \\ 4^{2} & 5^{2} \end{bmatrix}$
	$= R \left[\begin{array}{cc} 1 & - & 1 \\ \hline 16 & 25 \end{array} \right]$
	- 0 [a] ap :-
	$= R \left[\begin{array}{c} 9 \\ 400 \end{array} \right] = \begin{array}{c} 9R \\ 400 \end{array} \text{ units}.$
0.70	An e- shows transition according to
	the limiting line of the Pfund series
	in Hydrogen atom. then, calculate the
	wavelength of this in A.
	$n_1 = 5$ and $n_2 = \infty$
	$= R(1)^2 \int d - 1 \int$
	$= \mathcal{K}(1) \left[\frac{1}{5^2} - \frac{1}{8^2} \right]$
	$= R \left[1 - 0 \right] \left[:: R = 1 \right]$
	L 25] L 912 Å]
	1 = R
	λ 25
	$\therefore \lambda = 25 = 25 \times 912 \text{ Å}$
	R [I]
	= 22800 A
0.71	If the shortest wavelength of lyman's
im4aiims.in	If the shortest wavelength of lyman's series of li+2 is x, then find out the 5

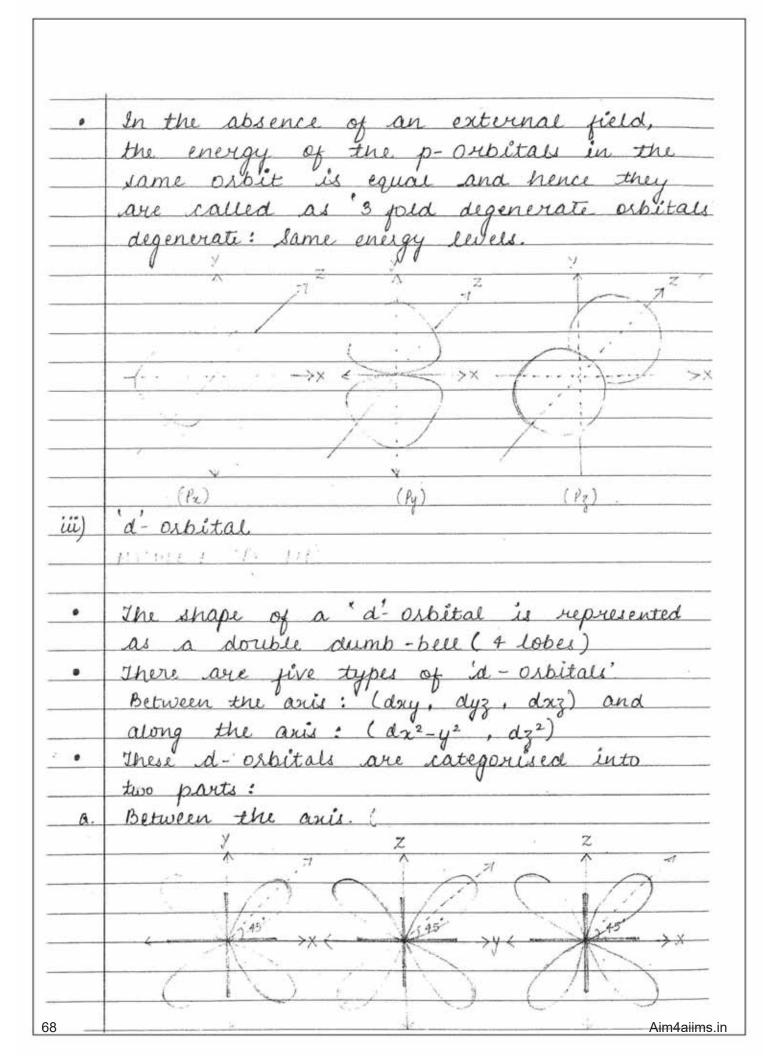
	maximum wavelength of Balman's series
	of hydrogen atom. Het
	For Lyman's series.
	n, = 1 and no = 0 (maximum wavelength)
	1 22 [1]
	$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
	$= R(3)^{2} \left[\frac{1}{1^{2}} - \frac{1}{\infty^{2}} \right]$
	= 9R(1-0) = 9R
	$\lambda = 1 = x$
	9 R
	2. R = 1 - (T)
	9n_
	For Balman's series
	$n_1 = 2$ and $n_2 = 2 + 1 = 3$. (min wavelength)
- 1	$1 R7^{2} [1 - 1]$
	$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
	$\frac{1}{\lambda} = RZ^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$ $= R(2)^{2} \left[\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$
	$= R(2)^{2} \begin{bmatrix} 1 & -1 \\ 2^{2} & 3^{2} \end{bmatrix}$
	$ = R(2)^{2} \begin{bmatrix} 1 & -1 \\ 2^{2} & 3^{2} \end{bmatrix} $ $ = 4R \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} $
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \end{bmatrix} = 5R$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= 7R$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= \lambda = 9$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= 5R$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= 5R$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= 5R$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= \lambda = 9$ Futting R from eq D we get. $\lambda = 9 = 9 \times 9x$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= \lambda = 9$ $= 5R$ Putting R from eq D we get. $= 9 = 9 \times 9R$ $= 5 \times 1 = 5$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= \lambda = 9$ Futting R from eq D we get. $\lambda = 9 = 9 \times 9x$
	$= R(2)^{2} \begin{bmatrix} 1 - 1 \\ 2^{2} & 3^{2} \end{bmatrix}$ $= 4R \begin{bmatrix} 1 - 1 \\ 4 & 9 \end{bmatrix}$ $= 4R \begin{bmatrix} 5 \\ 36 \end{bmatrix} = 5R$ $= \lambda = 9$ $5R$ Putting R from eq D we get. $\lambda = 9 = 9 \times 9R$ $5 \times 1 = 5$

72	of the maximum frequency of Balmer's
	series of H- atom is x, then find out
	the maximum prequency of Paschen
	series of Het
	For Balmer's series.
	$v = RCZ^{2} \begin{bmatrix} 1 & -1 \\ n_{1}^{2} & n_{2}^{2} \end{bmatrix} (n_{1} = 2, n_{2} = \infty)$
	$= RC(1)^2 \left[\frac{1}{2^2} - \frac{1}{\infty^2} \right]$
	= RC
	RC = 4x(1)
	For Parchen's series.
	$\vartheta = RCZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$
	$n_1 = 3$ and $n_2 = \infty$
	$= RC(2)^2 \left[\frac{1}{3^2} - \frac{1}{\omega^2} \right]$
	$\begin{bmatrix} 3^2 & \omega^2 \end{bmatrix}$
	= 4RC [1-0] = 4RC -(1)
	[9]
	By putting eg (1) in (1), we get
	By putting eq \mathbb{O} in \mathbb{O} , we get $= 4 \times 4 \times = 16 \times$
	9 9.
	Linite Line
	Limitations of Bohr Model:
	MODULE 1 (Pg 173)
•	Fine spectral lines indicates the presence of
	sub-energy shells in an orbit and their
	energy will be nearly same:
aii m s.i	It includes five drawbacks

Sommerfield Extension of the Bohr model:
Sommerfield theory was related to the explanation of fine spectral line i.e the existence of the sub orbits. Sommerfield introduced the concept of sub-energy level in an orbit according to sommer-field, in a main energy shell the energies of the sub shells are slightly different
Hence, on jumping of an electron from one energy level to another energy level will involve slightly different amount
of energy as it will depend on the subshell. : Number of lines in a spectral line
ne and n, energy level = ne x n,
de Broglie concept (Dual nature of matter) MODULE 1 ($Pg-174$) $\lambda = h = h$
mv p where, $\lambda = wavelength$ $h = plank's constant$ $m = mass$
V = velocity p = momentum Aim4ailms.in

	Impositant
	$\lambda = h$
	me
	when particle po travels with the
	velocity of light
	Important point concerned with de-broglie
	MODULE 1 (Pg - 175)
	$\lambda = \frac{\hbar}{\sqrt{2m \text{K.E}}}$
	is acclerated by applying potential different
	V. then. MODULE 1 (Pg - 175)
	1 - 4
	$\lambda = \frac{h}{\sqrt{2mQV}}$
	Jam g V
•	The wave nature of electron was varified
	experimentally by Davisson and Germen
	in a Crystal diffraction of cathode rays
	in a 'Crystal diffraction of cathode rays' in 1927. (electron microscope are used
	on this pasis)
•	An object undergoes diffraction has wave
	nature and it is associated with sub
	micro-scopic particles like electron, proton
	etc., when it is in motion.
im4aiims.in	6

	Number of waves made by an electron
	when it revolves in a particular Bohr
	orbit = Orbit number (n).
	$n = 2\pi 4$
	λ
	lenath
Q.73.	Sakulate the wave number of an electron
	moving with kinetic energy of $4.55 \times 10^{-25} \text{ J}$
	$\lambda = h$
	$\sqrt{2m KE}$. = 6.626 × 10
	= 6.626 × 10
	$\sqrt{2} \times 9.1 \times 10^{-31} \times 4.55 \times 10^{-25}$
	6.626 × 10 ⁻³⁴
	$\sqrt{9.1 \times 9.1 \times 10^{-56}}$
	$= 6.626 \times 10^{-34}$
	9.1 × 10 ⁻²⁸
	= 0.72 × 10 6 m
Q.74	Two particles A and B are in motion.
	the wavelength of particle A is 5x105m.
	If the mass of the particle B is 50%
	of A and its velocity is 25% of A,
	then calculate the wavelength of particle
	В. 9
	$\lambda_A = h = 5 \times 10^{-5} \text{ m}$
	mv _A
	$\lambda_{\mathcal{B}} = h$
	max va
	2 4
	: AA h/MAVA = A
	20 8h/MAVA 8h


	$\lambda A = h = 1$
11-2-2-	$\lambda_{\mathcal{B}}$ 8h 8.
	A A = AAX8
	$= 5 \times 10^{-5} \times 8$
	= 40 x 10 ⁻⁵ m
Q.75.	Calculate the de broglie wavelength of a
	Calculate the de broglie wavelength of a particle of mass so grams with a velocity of 200 m/s.
	$\lambda = h$, $m = 10 \text{ gms} = 10 \times 10^{-3} \text{ kg}$
	mv
	$= 6.626 \times 10^{-34}$
	10×10 ⁻³ x 200
-	= 6.626 × 10-34
	$2 \times 10^{-3} \times 10^{3}$
	$= 3.313 \times 10^{-34} \text{ m}$
Q 76	Calculate the de proglie wavelength of an
	moving in 2nd oubit of H atom.
	$\lambda = 2\pi H_0$
	n
	= 2x \times x 0.529 x 4 A
	2
	= 2.11 X Å
	Heisenberg uncertainity Principle: MODULE 1 (Pg-176)
	According to Heisenberg uncertainity princip "It is impossible to measure simultaneously

	$\Delta x. \Delta p \geq h$ or $\Delta x. \Delta v \geq h$
	4π $4\pi m$
	where h = 0.527 x 10-34 Jsec.
	4π
	2 (Incident light) & Size of an object
	Heisenberg ruled out the concept of
	jæred no. of orbit given by Bohr.
	According to helsenberg, we can only
	specify a region in space where the
	probability of finding electron is maximum
17	y the uncertainity in position of a particle is 0. then find out uncertainity in its
	is O. then find out uncertainty in its
-	momentum
	$\sum \Delta x \cdot \Delta p = h$
	4 x
	$\frac{h}{4\pi\Delta x} = \frac{h}{4\pi x}$
	$4\pi\Delta x$ $4\pi x$ 0.
	2 h 2 x
	: Ap = 0.
9.78	The uncertainity in position of an e- is
	The uncertainity in position of an e- is I is then calculate the uncertainity in its.
	velocity (M/s)
	$\Delta x \cdot \Delta p = h$
	4*
	$\Delta V = h$
	4max
	$= 0.527 \times 10^{-34} [:1A = 10^{-10} \text{ m}]$
64	9.1 X 10 -31 X 10 -10 Aim4aiims.ir

	-34 5 /
	0.527 × 10 = 5.7 × 10 m/s.
	9.1 × 10 +1
Q 79.	An e- is moving with a velocity of 300 m/s. if the uncertainity in velocity is 0.01% calculate the uncertainity in position.
	if the uncertainity in velocity is 0.01%
	calculate the uncertainty in position.
	V = 300 m/s.
	:. DV = 300 x 0.01 = 0.03 m/s
	100
	$\therefore \Delta x = h$
	4π M ΔV
	= 0.527x10 ⁻³⁴
	$9.1 \times 10^{-31} \times 0.03$
	$= 0.527 \times 10^{-3} = 5.7 \times 10^{-3}$
	9.1 × 3
	$= 1.9 \times 10^{-3} \text{ m}$
Q.80.	The uncertainity in position of an electron
	is double the uncertainity in position of H
	atom. If the uncertainity in momentum of
	electron is x then, the uncertainity in
	momentum of the actom.
	$\Delta P(H) = h$
	4x Dx (H)
	$\Delta p(e) = h$
	4π Δχ(e ⁻)
	: <u>Ap(H)</u> = <u>Ax(e-)</u> = 2 <u>Ax(H)</u>
	$\Delta p(e^{-})$ $\Delta x(H)$ $\Delta x(H)$
ALC: S	: Dp(H) = 2.
	x
	$\stackrel{\circ}{\sim} \Delta b (H) = 2 x.$

	Wave mechanical orde model:
0	It was based on the dual nature of
	electron. i.e. the particle as were as
	the wave nature.
0	This model was given by schrodinger and
	was represented by the following equation $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial x^2} + \partial^$
	124 + 24 + 24 + 8x2m [E-V] 4 = 0
	∂x^2 ∂y^2 ∂z^2 h^2
	or
	$\nabla^2 \psi + 8\pi^2 m (E-V) = 0.$
	h^2
	Where $\nabla^2 = Laplacion operator$
	Y (Psi) = wave function
	(Amplitude of wave)
	x, y, z = space-coordinate
	E = Jotal energy
	v = Potential chergy
	dell
	V VOAA
	The solution of the schrodinger equation gives a set of three quantum number n, I and m.
_	gives a set of three quantum number
	n, l and m.
	A. I. t. a. a.
	Orbitals:
0	It is a region in space whose the
	It is a region in space where the probability of finding electron is
	maximum (queater than 95%) or it
	is an electron cloud which has a definite
	size, shape and orientiation Aim4aiim

•	An orbital is represented as follows:
	Shapes of Atomic orbitals:
ý	'S'- Osbital. HODULE 1 (Pg-178)
	The shape of the 's' orbitals is represented
•	The 's' orbitals are symmetrical along all the axis.
	The's' ospitals are non-directional in
- 5	nature.
	X
	4
ii)	'p' orbital
	MODULE 1 (Pg-175)
	The shape of a p-orbital is a dumb
	represented as a dumb-bell (2 lobes)
•	There are three types of p-orbital,
	each axis.
	The angle between p-osbitals is 90'
	THE CONOCE DELICION D- OKRIFALL II 90

	these d-orbitals are symmetrical and
	these d-orbitals are symmetrical and they make an angle of 45° with each axis.
Ь.	Along the axis.
	A A
	←(-×-)×× ← - ((X)) → > /
	$(\rho_{2}^{2}-y^{2}) \qquad \qquad (\rho_{2}^{2})$
	It is also known as bal
	souther of doughnut, becau
	it consists of two lobes are with an e-ring in x-y plan
•	a-ospitals are directional in nature,
	In absence of an external field, the
	energy of the a-orbital in the same
	orbit are equal hence, they are called
	as 5- poed degenerate osbitale.
iv)	y-orbital
•	in noture.
	There are seven f-oxbital

	Quantum Number:
	MOINTLL ! (Pg 176)
0	quantum number are the address of an electron.
	Quantum number determines the position and the energy of an electron in an
_	atom.
	An orbital is designated by three quantum
	An electron is designated by four quantum number n, l, m and s
	n = Principal quantum number.
	l = Azimuthal quantum number.
_	Sub-Shell (S, p, d, f)
	m = Magnetic Quantum number. Oshitals (S. px, py, pz, dxy, dyz, dxz, dx2-y2, dz2)
-	s or ms = Spin Quantum number.
	Principal Quantum number (n) MODULE 1 (Pg - 176)
	It was given by Bohr.
	It represents the name, size and energy
	The possible value of n are positive integers. (1, 2, 3, 4) and nomenclatured as (K, L, M)
	The same of the sa

0	As the value of n increases, the
	energy and the distance of an electron
	from the nucleus also increases.
6	Total number of electron in a shell
	are given by 2n².
2.	Azimuthal / Angular / Subsidary/ Secondary
	Quantum number (l)
	MODULE 1 (Pg - 127)
	Tr.
٠	It was given by summerfield.
•	It signifies a subshell and determines the
	shape of an orbital.
•	the possible value of lare from 0 to (n.
	When 1=0 (s-subshell),
-	when ! ! = 1 (p - subshell).
	when l = 2 (d - subshell),
	when l = 3 (f subshell).
	when e = 4 (g - subshell) and so on
	Relation between n and l:
	00 (27 Km)
	when $n=1$, $l=0$ (s-subshell)
	when $n=2$, $l=0,1$ (s, p-subshell)
	when $n = 3$, $l = 0, 1, 2 (s, p, d - subshell)$
	when n=4, l=0,1,2,3. (s,p,d,f-subshet
	It shows that forth shell contains four
	substill ie s, p, d and f.
	U

	It represents the orbital angular
	momentum of an electron.
	Orbital angular momentum = Se(e+1) h
	27
	S = 0 (:1=0)
	p = h (:: l = 1)
	$\sqrt{2}\pi$
	$d = \sqrt{6}h l: l = 2)$
	2 7
	$f = \sqrt{12}h = \sqrt{3}h$ ("1=3).
	2 * *
8	Number of electron in a subshell = 2 (21+1
	$S = 2 \qquad ("l=0)$
_	
	d = 10 (:: l = 2)
_	$f = 14$ (: $\ell = 3$)
	(01.1)
	Number of orbitals in a subshell = (21+1)
-	S = I (:: l = 0)
	p = 3 (:: $l = 1$) $d = 5$ (:: $l = 2$)
	$f = 7 \qquad (:: l = 3)$
	Maximum number of electron in an
	oubital are two
•	It represents/signifies the energy of a
	subshell in a particular orbit.
	when $\ell = 0 \ 1 \ 2 \ 3$
	3 < p < d < 1
	Its applicable only for muti electron epecitions

•	In single electron species like hydrogen, s=p=d=f. because effective nuclear char
	will be some
0.81.	Calculate the orbital angular momentum
	of an electron in p-subshell. Oskital angular momentum = $\int l(l+1)h$
	for p-subshell. l=1
	$= \int 1 (1+1) h$
	27
	$= \sqrt{2} h - \sqrt{2}h \times h.$
	2π 2π $\sqrt{2}\pi$
3.	Magnetic Quantum number (m) MOSULE 1 (Pg-178)
•	It was given by Linde.
	It represents the orientation of an orbit
	The possible values of m is from (-1) to
	(+l) including zero.
	when $l=0$, $m=0$.
	(s-subshell -> 1 orbital)
	A CONTRACTOR OF THE CONTRACTOR
	S S
	when $l=1$, $m=-1,0,+1$
	when $l=1$, $m=-1$, 0 , $+1$ -1 0 $+1$ $(p-subshell \rightarrow 3 orbitals)$

Spin Quantum number (s) MODULE 1 (Pg-179)
It was given by Uhlenbeck and Goudschmidt It represent the direction of rotation of an electron about its own axis.
The possible value of s are $\binom{+1}{2}$ and $\binom{-1}{2}$
that represent clockwise and anti-clockwise.
It represent the spin angular momentum of an electron.
when $s = +1$
spin angular momentum = $\int s(s+1) h$
when $3 = +1 = \sqrt{\frac{1}{2} + 1} h$ $2 = \sqrt{\frac{1}{2} + 1} h$
$= \int \frac{1}{2} \left(\frac{3}{2} \right) \frac{h}{2\pi}$
$= \int_{4}^{3} h = \sqrt{3}h = \sqrt{3}h$ $= \int_{4}^{3} h = \sqrt{3}h = \sqrt{3}h$ $= 2x2\pi + 4\pi$
when $S = -1$

	Jotal number of spin = ±1 x (no of unpaired e-)
	Formulais Association:
	Total no of electron in a shell: 2n2
	No. of Osbitals in a shell: n2
iii)	
(v)	No. of orbitals in a subshell: (21+1)
	(Total na of values of 'm' in a subshell)
v)	Maximum no of electron in a osbital: 2
ví)_	Osbital angulas momentum (µ2): \l(l+1) h
vii)	spin angular momentum (µs): Is(s+1) h
viii)	
	Islal angular momentum (41) # (41) + (45)
	Total angular momentum (µ) : (µe) + (µs) nth shell: n subshell
	Find out the values of n, l and m for
ix)	
@· 82	Find out the values of n, l and m for the following orbitals.
@· 82	Find out the values of n , l and m for the following orbitals. $4dz^2$:
ix) Q-82 i)	Find out the values of n , l and m for the following orbitals. $4dz^2$: $n = 4$ $l = 2$ $m = 0$
ix) Q-82 i)	Find out the values of n , l and m for the pollowing orbitals. $4dz^2$: $n = 4$ $l = 2$ $m = 0$ $5S$:
ii)	Find out the values of n , l and m for the pollowing orbitals. $4dz^2$: $n = 4 \qquad l = 2 \qquad m = 0$ $5S:$ $n = 5 \qquad l = 0 \qquad m = 0$ $3lz:$ $n = 3 \qquad l = 1 \qquad m = 0$
ix) Q-82 i)	Find out the values of n , l and m for the following orbitals. $4dz^2$: $n = 4$ $l = 2$ $m = 0$ $5S$: $n = 5$ $l = 0$ $m = 0$ $3lz$: $n = 3$ $l = 1$ $m = 0$ $2lz$:
ii)	Find out the values of n , l and m for the pollowing orbitals. $4dz^2$: $n = 4 \qquad l = 2 \qquad m = 0$ $5S:$ $n = 5 \qquad l = 0 \qquad m = 0$ $3lz:$ $n = 3 \qquad l = 1 \qquad m = 0$
ii)	Find out the values of n , l and m for the following orbitals. $4dz^2$: $n = 4$ $l = 2$ $m = 0$ $5S$: $n = 5$ $l = 0$ $m = 0$ $3P_z$: $n = 3$ $l = 1$ $m = 0$ $2P_a$:

i)	n=4 $l=1$ $m=-1$
	orbital: 4 Pa or 4Py
ii)	n = 3 $l = 2$ $m = 0$
	Orbital: 3dz²
iii)	n = 2 $l = 0$ $m = 0$
	Oxbital: 25
ův)	n = 3 $l = 2$ $m = 2$
	orbital: 3dx2-y2 or 3dzy
v)	¥420
	here $n=4$, $l=2$, $m=0$.
	: Oxbital: 4dz2
84	which of the following set of quantum
	number is possible.
<i>i</i>)	n = 3 $l = 2$ $m = -3$ $s = +1/2$
11)	n = 3 $l = 3$ $m = 2$ $s = -1/2$
iii)	n = 3 $l = 1$ $m = 0$ $s = +1/2n = 3$ $l = 1$ $m = 0$ $s = +1$
iv)	
	Ans: (ii) $n=3$, $l=1$, $m=0$ and $s=+/2$ It is possible because $m \neq -3$ and
	$1 \neq 3$ and $s \neq +1$.
	$\frac{1}{2} \int_{-\infty}^{\infty} d < n \text{ and } m = (-\ell) \text{ to } \ell$
	and $s = +1/2$
0.85	which of the following orbitals are
,	not possible
i)	$\downarrow p [\times]$
	Not possible because if $n=1$, then $l=0$
-	Not possible because if n=1, then l=0 o: l=0, : only 's-oubital' is possible
ii)	23 [~]
	Possible because if $n=2$, then $l=0,1$
3	when 1=0 i.e. 's-oxbitat' 's-subshell' Aim4aiims

iii)	34 [×]
	Not possible because if $n = 3$ then $l = 0, 1, 2$
	(s, p and d subshell).
	Hence, 'f-subshell' is not possible
iv)	44 []
	Possible because if $n = 4$ then $l = 0, 1, 2, 3$
	hence 1=3, f-subshell!
·v)	2d [×]
	Not possible because if $n = 2$, then $l = 0.1$
	(s, p subshell)
0.86	Salculate the total no of electrons which
	can be present in a 4th dsubshell
	Jotal no. of $e^- = 2(2l+1)$
	= 2(2x2+1)
	$= 2(4+1) = 2 \times 5 = 10$
Q-87	Find out the value of total no. of 'm' for
4	an e- present in the 5th shell.
	n = 5
	L = 0,1,2,3,4
	when $l=0$, $m=0$
	when $l=1$, $m=-1,0,+1$
	when $l=2$, $m=-2,-1,0,+1,+2$
	when $l = 3$, $m = -3, -2, -1, 0, +1, +2, +3$
	when $l = 4$, $m = -4$, -3 , $+2$, -1 , 0 , $+1$, $+2$, $+3$, $+4$
	hence total value of m = 1+3+5+7+9 =
	25 electrons.
	i. b = DOR (A.O. LOTA BLAN
	no. of e^- in a shell = $4n^2 = 4x5^2$
	= #x 25 electrons.

28	Find out the no. of e in M shell having
	the value of magnetic quantum no as -1
	the value of magnetic quantum no as -1 when $m = -1$
	then & = 1
	M shell, $: n = 3$.
	: L = 0, 1, 2
	when $d=0$, $m=0$
	when $l = 1$, $m = (-1)0, +1$
	when $l=2$, $m=-2$, (-1) , $(0, +1, +2)$
	hence, total no of e ie value of 'm' =
	1+3+5 = 9
	Total no. of e- having magnetic quantum
	Jotal no. of e- having magnetic quantum as -1 = 2x 2 = 4 electrons.
89	In orbitals of n=3 and l=2, find out
	the total no of electrons having the
	value of spin quantum no. as -1/2.
	when $n=3$, $l=2$ &
	Total no. of orbital : 3d
	Jotal no. of e in 3d = 10
	: no of e having s = -1/2 = 5
	•
0.	Find out the maximum no of orbitals
	in the 4th shell having an electron with
_	Jotal no of orbital, in a shell =2n2
_	
	electrons 2
	= no of notation = 2x4 = 16 x 2 = 32 e
	: spin quantum no = +1/2
	: no of electrons = 32 e - 16 e
	2

Q.91	fox n+1 = 5, find out the mo of subshell
9	for n+l=5, find out the no. of subshell, total no of orbital and total no of electr
()	Total no. of subshell;
	Possible outcomes = 5+0 = 5s
-1673	= 4+1 = 4p
	= 3 + 2 = 3d.
	3
	Hence, no. of subshell = 3.
íí)	Total no. of orbitals:
	2n 5s = 1
	2n + p = 3
	In 3d = 5
	9
-	Hence, no of orbitals = 9.
iii)	Total no of e-:
	In 5s = 2
	2n + p = 6
	In 3d = 10
	18.
	Hence, no of electrons = 18
	<i>y</i>
Q.92.	The value of n+1 is not more than 3, then
	find out the total no of subshell, total no. of orbitals and total no of electrons.
	of orbitals and total no of electrons.
	Possible outcomes:
	when $n+l=3$.
	3+0=3, (35 Orth. subshell)
	2+1 = 3. , (2p subshell)
	when $n+l=2$
	2+0=2, (2s substrell)
	when $m + l = 1$
im4aiims.ir	1 + 0 = 1, (1s subshift)

	Hence,
	total no. of subshell = 4
	total no of orbital = 1+3+1+1
-	= 6
	total no of electrons = 12
	Nodes:
0	It is a region in space where the
-,	It is a region in space where the probability of finding e- is zero.
	It is of two types:
i)	Radial node / spherical node/ Nodal surface
	value of Hadial made = (n-l-1)
ii)	Angular node/ Non-spherical node/ nodal
	puise.
	value of angular node = l (azimuthal g.n.)
	: Value of total no. of nodes = (value of radiae) + (angular node.)
	radial) + (angular node.)
	= (n-l-1)+l
	$= \frac{(n-1)}{(n-1)}$
2.93	Calculate the number of radial, angular.
	and total no. of nodes for the
	following:
<i>i</i>)	$^{\prime}4d$: $^{\prime}n=4$ and $l=2$
	Radial node = $(n-l-1) = 4-2-1 = 1$
	Angular node = 1 = 2
	Total node = $(n-1) = 4 - 1 = 3$

	Angular node = (1) = 0
	Total node = $(n-1) = 5-1 = 4$
(ii)	[
	Radial node = $(n-l-1) = 3-l-1 = 1$
	Angular node = (1) = 1
	Total node = $(n-1) = 3-1 = 2$
0	Number of nodal plane(1):
<i>i</i>)	S-orbital: S = O
ii)	p-orbital: px = 447 plane
	$p_y = x_z^2 plane$
	pz = xy plane
iii)	d-orbital: dry = 23 plane and yz plan
	dyz = xy plane and xz plane
	daz = xy plane and yz plane
	$dx^2 - y^2 = 0$
	dz^{2} = 0
	Rules of filling orbitals:
<i>i</i>)*	Aufbau Principle:
ii)	(n+l) rule:
ũi)	Pauli's exclusion principle:
	he stated that no 2 electrons can have
	the same value of all jour quantum numb
	eg: In 25 orbital. [1] (not possible)

	In 2s orbital: n= 2 and n= 2
	(eg:) 1 = 0 and 12 = 0
	$m_1 = 0$ and $gm_2 = 0$
	$s_1 = +1$ and $s_2 = -1$
	2 2
(v)	Hund's rule of Maximum multiplicity:
	Electrons are distributed in a way to
	give maximum no. of unpaired electron
	with parallel spin!
	Reasons:
0	due to symmetrical distribution of electron
	the inner electronic repulsion becomes
	minimum.
	minimum.
•	minimum.
•	As the number of electrons with the
•	As the number of electrons with the same spin increases, the number of
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron.
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron.
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron.
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron. [1 1 (X) 1 1 (X) (Opposite spin) (Pairing)
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron. [1 1 1 (x) 11 1 (x) (opposite spin) (Pairing) Result:
•	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron. [1 1 (X) 1 1 (X) (Opposite spin) (Pairing) Result: Half filled and full filled osbitals are
	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron. [1 1 (X) 11 1 (X) (opposite spin) (Pairing) Result: Half filled and full filled orbitals are more stable.
	As the number of electrons with the same spin increases, the number of exchanges will increase and thus the exchange energy will increase which ultimately leads to increase in the stability of an electron. [1 1 (X) 1 1 (X) (Opposite spin) (Pairing) Result: Half filled and full filled osbitals are

	Electronic configuration of ions:
•	Sations are positively charged and anions are negatively charged.
	l v v v v v v v v v v v v v v v v v v v
	Electronic configuration of anions are same as that of Aufbau Principal but
	for the electronic configuration of cation
	the electrons from the outermost shell in with higher energy loses earlier.
	V *
-	eg: 30 Zn^{2} : $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}$: 30 Zn^{2} : $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}$
	$24 \text{ Cr} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ $24 \text{ Cr} + 2 : 1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$
	: 24 Cx +2 : Ls2 25 2p6 352 3p6 3d+
	Some general points:
<i>i)</i>	The elements having unpaired electrons
-	The elements having unpaired electrons are called paramagnetic and the element with no punpaired electrons are called
	dimagnetic electrons are called
	almagnetic
ií)	Magnetic movement/Paramagnetic mommoveme
	$= \int n(n+2) BM.$
	where, n = no. of unpaired electrons.
	BM = bohr magneton (constant) BM = 9.27 × 10 ⁻²⁴ Joule/sec.
-	BM = 9.27 x 10 - 24 Joule/ sec.
	:. $\int n(n+2) BM = 9.27 \times 10^{-24} J/s$.
Aim4aiims.in	83

		Total spin = ±1 x no. of unpaired e-
	(v)	Kernel: It is the remaining part of an atom after the removal of outermost shell.
-	+	shell.
•	v)	соне energy : Remaining possion after kernel. ie. = Atomic no - no. of e- in kernel.
_	\dashv	
	94.	For which element of the periodic table, Pauli's exclusion principal is not
_	_	Pauli's exclusion principal is not
-	-	applicable?
-	-	It is not applicable for nyorogen (12)
-	-	It is not applicable for hydrogen (+12) because it doesn't contains (minimum number) of two electrons in its shell.
-		rander) of soo each are
	95	Determine the first element of periodic
		Determine the first element of periodic table for which hund's rule is
		applicable.
		carbon, because from this element, the
		pairing of the electron starts.
		In the which continue ation, which
	96.	en the power of
-	i)	rules are violated. 1 1 1 1 1 1 Aufbau principal
	1)	1s 2s 2p
	ii)	14 14 14 Hunds rule
	1.7	15 25 2p
	tii)	11 12 1 1 1 Munds and Pauli's rule
		1s 2s 2p
	iv)	11 111 111 Pauli's Principal
84		Aim4aiims.in

0.97	
	is not possible, then find out the
	total no of possible element in nature?
	Total no. of electron in a shell = 2n2
-	when $n = 1$; no of $e^- = 2(1)^2 = 2$
	when $n = 2$; no of $e^- = 2(2)^2 = 8$
	when $n = 3$; no of $e^- = 2(3)^2 = 18$
	when $n = 4$; no of $e^- = 2(4)^2 = 32$
	: 2+8+18+32 = 60
	Hence, total no. of possible elements - 60°
Q.98	4 principle quantum no more than 4 is not possible in the electronic configuration of
	an element then find out the maximum no.
	of electrons.
	n \le 4
	configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d 4p
	Hence, maximum no of electrons present
	in the element = 36 2+2+6+2+6+2+10+6
	= 36 electrons.
0,99	In an atom, how many electrons can have
	these value of quantum no.
	n=4; $L=2$; $m=1$ and $S=+1/2$
	Only one electron can have the above values
	because according to Pauli's exclusion rule,
	'No two electrons can have the same value
_	of all the four quantum number!
0.100	Write down the electronic configuration of
Aim4aiims.in	Phosphorus?

i)	Find out the total no. of e in phosphorus
	pr which
	electronic configuration of phosphorus: 15 ² 25 ² 2p ⁶ 3s ² 3p ³ 11 11 11 11 11 1 1 1 1
	1s2 2s2 2p6 3s2 3p3
	n -8 16 16 16 16 16 1 1 1
	15 25 2p 33 3p
	n = 3
	no. of e-s = 3+2 = 5 electrons
۵	n=3 and $l=1$
	no of e-s = 3 electrons
•	n=3 and $m=0$
	no of es = 3 electrions
	n=2 and $m=-1$
	no of e's = 2 electrons
9	L= L*
	no. of $e^{-s} = 6+3 = 9$ electrons
•	l=0 and $s=+1/2$
	no of ets = 3 electrons
ii)	Total spin: ± 1 x no. of unpaired electron
	$=\frac{\pm 1}{2} \times 3 = \pm \frac{3}{9}$
	2 2
iii)	Magnetic moment: In (n+2) BM.
	$= \sqrt{3(3+2)} BM$
	= J3X5 BM = J15 BM
(v)	write down the set of four quantum
	numbers for:
0.	4 th electron Aim4aiims

	$n = 2;$ $l = 0$ $m = 0$ $s = \pm 1/2$
0	11th electron
	$n = 3$; $l = 0$ $m = 0$ $s = \pm 1/2$
	15 th electron
	n = 3; $l = 1$ $m = +1, 0, -1$ $s = +1/2$
0.101	For chromium atom determine the
	followings :
	: Chromium (cr) is an exception,
	: its electronic configuration =
	$1s^2 2s^2 2p^6 3s^2 3p^6 4s' 3d^5$
	11 11 11 11 11 11
	1s 2s 2p 3s
	11 11 11 1 1 1 1 1 1
	3p · 4s . 3d
	Na of unpaired electrons: 1+5 = 6 electron
•	No of paired electrons: 2+2+6+2+6=18 electro
	No of pair of electron: 9 electron pair
	NO of s, p and of electron: s-subshell=
	p subshell = 12 e-s and d subshell = 5e-
	Total no of paramagnetic movement:
	= total no. of unpaired electrons = 6 electrons
•	No. of p-ospital: 3+3 = 6 ospital
	No of e- with (n+1) = 4: (4s and 3p osbitals)
	= 6+1=7 electrons
•	No of e- with m=0: (18, 28, 38, 48, 3pz and
	3dz² Orbitals)
	= 2+2+2+2+1+1 = 12 electrons
•	No of e with l=1 and s=+1/2: (2p and 3p
n4aiims.in	orbitals) = $3 + 3 = 6$ electrons. 87

	no. of electrons with n = 2 and l = 0					
	(2s orbital) = 2 electrons.					
	no of electrons with n=3 and m=-2					
	no. of electrons with $n=3$ and $m=-2$ (3d orbital) = 1 electron					
	Jotal spin: ± 1 x no. of unpaired e-					
	$= \frac{+1}{2} \times 6 = \pm 3$					
•	Paramagnetic movement: $\sqrt{n(n+2)}$ BM = $\sqrt{6(6+2)}$ BM					
	J6x8 BM = J48 BM					
	write down the configuration for 19th					
	and last electron for chromium.					
	fox 19th electron of chromium,					
	: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s'					
	$n = 4, l = 0, m = 0, s = \pm 1/2$					
	for east electron of chromium,					
	For last electron of chromium, .: Ls ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s' 3d ⁵					
	$n = 3$, $l = 2$, $m = -2$ to $+2$, $s = \pm 1/2$					
Q·102	Calculate the total spin and magnetic movement of Fe+2, Zn+2 and Cr+3					
	movement of Fe+2, Zn+2 and Cr+3					
i)	7e+2: Ls2 2s2 2p6 3s2 3p6 3d6					
	: Total spin = + 1 x no. of unpaired e					
	$= \frac{1}{2} \times 4 = \pm 2$					
	Magnetic movement = In(n+2) BM					
	= 14(4+2)BM					
00	= J4x6 BM = J24 BM					
88	Aim4aiims.in					

ii)	Zn^{+3} : $Ls^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$.
	Total spin = + 1 no. of unpaired e-
	> + 1 x 0 = 0 = -
	Magnetic movement = $\int n(n+2) BM$ = $\int o(0+2) BM = 0$
iii)	C1+3: Ls2 2s2 2p6 3s2 3p6 3d3
	Total spin = $\pm \frac{1}{2} \times no.$ of unpaired electron.
	$= \pm \frac{1}{2} \times \frac{3}{2} = \pm \frac{3}{2}$
	Magnetic movement = $\int n(n+2) BM$ = $\int 3(3+2) BM$
	$= \int 3x5 BM = \int 15 BM$

SOME BASIC CONCEPT
OF CHEMISTRY
Chemistry: It is a branch of science which deals with study of matter, its chemical composition and its physical and chemical properties and the chang which it undergoes in energy and comp
sition during various process. It is also
and their transformation.
Matter: Anything which has mass and occupies space is called matter.
Classification of Matter:
Classification of Matter:
1
Physical classification Shemical classifica Solid Pure substance Mixtur
Physical classification chemical classification Solid Pure substance Mixtur Liquid
Physical classification Shemical classifica Solid Pure substance Mixtur
Physical classification Chemical classifica Solid Pure substance Mixtur Liquid gases
Physical classification Solid Pure substance Mixtur Liquid gases
Physical classification Chemical classifica Solid Pure substance Mixtur Liquid gases
Physical classification Solid Pure substance Mixtus Liquid gases element Compound
Physical classification Shemical classification Fure substance Mixtus Liquid gases element Compound Metals

Branches of	Chemistry:	
Organic	Inorganic	Physical
Study of	study of all	It deals
hydrocarbons	the known	with the
and their	elements, compo-	121
derivation	unds and mixture	
derivatives	mixture except	chemistry.
10-11-11-11-11-11-11-11-11-11-11-11-11-1	hydrocaubons	V
Solid	Liquid	gas
Definite shape	Definite volumes	No definite
Definite shape and volume	but shape	shape or
	indefinite	volume
Particles are	Particles are	Particles are
held very closely		far apart.
in ordered	packed	,
matt manner		
strong intermol-	Moderate or	weak interno
	Interminute	cular forces
U	molecular	(vanderwall
	forces	force)
Particles do not	Particles can	Particles can
more freely		move easily
around	q q	and very fas
It possess mini-	Moderate energy	Maximum
	17	

	Pure substance: It is made of only one
	type of substance
	element: It is the pure substance which
	contains only one type of atom.
	eg: H, He, Li, Mg, Na
	compounds: It is the pure substance which
	have more than one type of atom in fixed ratio by mass
	eg: CO2, H2O, Nacl, KNO3, HNO3, BF3
	Molecules: It is the simplest form of element or compound which exist independently.
	eg: H2, O2, P4, NH3, H20, H2SO4, PC15 etc.
	Types of molecules:
٠	Molecules of element
	eg: He, Ar, O3, P4, S8
•	Molecules of compound
	eg: H2O, PCl3, NO2, KCl
*	All compounds are molecules but all
	molecules are not compound.
	Pure substances cano cannot be seperated
	by using physical methods. (distillation, crystalisation, mechanical seperation, hand-
	picking etc).
	princip co.

	Vixtures can be seperated by using
P	Mixtures can be seperated by using physical methods and chemical methods.
	compounds can be seperated by using themical methods.
e	g: 2HgO - => 2Hg + O2 1
A o	tomicity: Istal no. of atoms present in me molecule of given substance g: Atomicity(2) = 02, N2, H2 Atomicity(3) = 03, SO2, NO2
U	Atomicity (3) = 03, SO2, NO2
M su	lixture: It contains more than one type of ubstance in variable proportion.
- 4	Tomogenous Mixture: Mixture which have uniform composition throughout and similar property
Je e	Single phase (exact density, property)etc] g: Mixture of gases, Alloy, True solution, water + salt, H20 + glucose, Petrol, Diesel, Kerosene
- n	eterogenous Mixture: Mixture which have non-uniform composition and different soperties.
eg	# [different phase]
	rg: Sand + H2O, sugar + Salt, Dil + water, Fe+S, Diamond + graphite, Milk (liquid:
Aim4aiims.in	selid (at)

Q. 1	which of the following is not a mixture		
<i>i</i>)	1 / //		
ii) iii)			
iv)	Ais Homogenous		
	Ans) iii) steam		
	Since Iteam is a H2O compound, therefore		
	it's not a mixture.		
Q. 2.	classify the following into elements, compound and mixture:		
<i>(</i>)	Diamond - element		
ï	Steel - Homogenous Mixture		
	1		
iv)	smoke - Heterogenous Mixture		
v)	laughing gas - compound		
vi)	Lecy - Homogenous mixture		
vii)	Dry Ice - CO2(s) - compound		
viii)	Stored Cloud - Heterogenous mixture		
ix)			
x)	Soin - Homogenous mixture Diesel - Homogenous mixture		
	Properties and Measurement of Matters:		
	Physical Properties: Properties which can		
	be measured and or observed without any change in the composition or identity		
	change in the composition or identity		
	of the substances.		
	Chemical Properties: Properties in which		
	chemical substances occurs in the		
	substance. Aim4aiims.in		

	eg: Reactivity, combustibility. Acidity (нервас он) and Basicity (replacing н)
	Physical Quantity: All such quantities which can be measured during scientific studies.
	Physical quantity = Pure no x unit. Units: It is defined as the standard or reference which choose to measure
	any physical quantities.
1.	Some important unit conversions: Length (SI unit: m) also measured in yard, feet, inch and miles.
i) ii)	1 mile = 1760 yards 1 yard = 3 feet
ίιί) ίν)	1 foot = 12 inch $1 inch = 2.54 cm$
*	Inter atomic distances and wavelength are reported in smaller units like nm, Å, pm etc.
i)	$L nm = 10^{-9} m = 10^{-7} cm$
ii)	$1 A = 10^{-10} \text{ m} = 10^{-8} \text{ cm}$
iii)	$1 \text{ pm} = 10^{-12} \text{ m} = 10^{-10} \text{ cm}$
iv)	1 7ermi = 10 ⁻¹⁵ m = 10 ⁻¹³ cm

2.	Mass: (SI unit: Kg)
	also measured in g, mg, pound, lb, ton
	quintal, amu.
	LOWD.
ť)	1 metric ton = +000 kg
ii)	
iii	1 kg = 2.205 lb
iv)	1 kg = 1000 g
_v)	$1 \text{ anu} = 1.66 \times 10^{-24} \text{ g} = 1.66 \times 10^{-27} \text{ kg}$
3.	Temperature: (SI unit : K)
	also measured in "c and "F
(i)	K = °C + 273.15
ii)	°C - °F - 32
	5 9
4.	Volume: (SI unit: m3)
	also measured in l, me, cc, cm3, am3
i)	$1 m^3 = 1000 L$
ii)	$1 ml = 1 cc = 1 cm^3$
iii)	$1 l = 1 dm^3 = 10^{-3} m^3$
iv)	1 l = 1000 ml = 1000 cc
5.	Energy: (SI unit: I) also measured in erg, ev. cal, L-atm,
	also measured in erg, ev, cal, L-atm.
	watt-hi
i)	1 cal = 4.18 \(4.2 \) J
ii)	$1 J = 10^7 \text{ erg}$
iii)	$f eV = 1.6 \times 10^{-19} \text{ J}$ Aim4aiims

iv	1 L- atm = 1 L × 1 atm.
,	$= (10^{-3} \text{ m}^3) \times (10^5 \times 1.013 \text{ Pa})$
	= 10 ² x 1.013 ~ 100 J
	= 101.3 T (ml)
. 2	Arrange the unit of energy in the
	increasing order:
	increasing order: $1eV = 1.6 \times 10^{-19} J$
	lerg = 10-7 J
	IJ' = IJ
	1 cal = 4.2 J
	1 L-atm = 100 J
	:. lev < 1 erg < 1 J < 1 cal < 1 1-atm
6.	Pressure: (SI unit: Pascal)
	also measured in atm, bar, tois.
cm of Hg, mm of Hg	
	, ,
i)	1 atm = 1.01325 × 105 Pa
ii)	1 atm = 1.013 bar
iii)	1 atm = 760 mm of Hg
lv)	1 atm = 76 cm of Hg
v)	1 atm = 760 store of Hg
失	I tour is the pressure exerted by 1 mm
	column of Hg
	: 1 mm = 1 toru
	Some important Prefix:

98	: $f(a) = 4.2 T$: $f(a) = 4.2 \times 2 = 8.4 T$ Aim4aiims.ii	
ii)	2 sal into T	
	= 1609.5 ≈ 1609 m	
	= 1760 x3 x 12 x 2.54 x 10 ⁻² m	
	= 1760 x 3 x 12 x 2.54 cm	
	= 1760 x 3 x 12 inch	
	1 mile = 1760 yard = 1760 x 3 feet	
i)	1 mile into m	
	1 site into me	
₹. 3	Convert the following:	
	unit conversion:	
	10 ⁻⁶ m ³	
	density of $H_{2.0} = \frac{19 \text{ cm}^3}{10^{-6} \text{ m}^3} = \frac{10^3 \text{ kg/m}^3}{10^{-6} \text{ m}^3}$	
•	density of H20 = 19/cm3	
•	$1 \text{ km} = 1000 \text{ m} = 10^5 \text{ cm} = 10^6 \text{ mm}$	
	u and $u = unit$.	
	: n & 1 where n = numerical value	
	numerical value	
	Larger the unit, smaller will be the	
	1 mégo = 10	
	$1 \text{ kg} = 10^3$ $1 \text{ mego} = 10^6$	
	$1 \text{ micro} = 10^{-6}$	
	1 mili = 10^{-3}	
	$1 centi = 10^{-2}$	
	1 deci = 10 ⁻¹	

iii)	10 atm into tors	_
	: 1 atm = 760 toss	_
	: 10 atm = 760×10 = 7600 toss	
(v)	22.4 l into cc	
	: 1 l= 1500 cc	
	:. 22.4 l = 22.4 × 1000 = 22400 CC	
v)	I ton into pound.	
	·: 1 ton = 1000 kg	-
	= 1000 x 2.205 lb.	
	= 2205 lb	
vi)	25'c into K and °F	
	" Q'C = 273 K	
	:. 25°C = 273+25 K	
	= 298 K	
	and	-
	: °C = °F-32	
	5 9	
	: 25 = °F - 32	
	5 9	
	: 'F = 45 + 32 *F	
	= 77'F	
4	Convert the following:	
i)	10 l into m ³ , am ³ and cc	
	$1 = 10^{-3} \text{ m}^3$	
	$10l = 10 \times 10^{-3} \text{ m}^3$	
	$= 10^{-2} \text{ m}^3$	

0	$J l = 1 am^3$ and	
4	11 = 1000 cc	
ii)	1 l-atm into J and eV	
	1 l-atm = 101.3 J and	
	1 l-atm = 100 J	
	= 100 × 1 eV	
	1.6×10-19 = 6.25 × 10 ²⁰ eV	
	= 6.25 × 10 eV	
iii)	1 pm = into nm, A and km	
	$1 \perp pm = 10^{-12} m$	
	$\frac{1 \text{ pm}}{1 \text{ pm}} = \frac{10^{-12} \text{ m}}{10^{-12} \text{ m}} = \frac{10^{-12} \times 10^9 \text{ nm}}{10^{-3} \times 10^9 \text{ nm}}$	
	= 10 nm	
	+ pm = 10 / 1/ m/	
	$= \frac{10^{10} \times 10^{10} \text{ A}}{10^{-10+19} \text{ i}}$	
	= /10-10+1/A	
	$= 10^{\circ} \mathring{A} = 1 \mathring{A}$	
7.	1 pm + 15 10 1/	
	$1 \text{ pm} = 10^{-12} \text{ m}$	
	$= 10^{-12} \times 10^{10} \text{ Å}$	
	$= lo^{-2} \mathring{A}$	- A
	$1 \text{ pm} = 10^{-12} \text{ m}$	
	$= 10^{-12} \times 10^{-3} \text{ km}$	
	$= 10^{-15} \text{ km}$	

	Mole Concept:
	Mole: It was given by Ostwald in 1896 Latin word, meaning heap or pile.
	Mole is the SI unit which gives amount of substances
朱	Definition: A mole is defined as amounts of substances that contains as many particles as their are total no of atom present in 12 gm of C-12 isotope
	1 mole = total no of atoms present in 12 g of C-12 atom
•	Mass of one C-12 atom = $1.99 \times 10^{-23} g$ (mass spectrometer)
	Total no of atoms present in 129 of
	$C-12$ atom = $12g$ = 6.022×10^{23}
	where 6.022 × 10 ²³ = NA Or No i.e. Avogadro no.
	V
	1 mole always contains 6.022 × 10
	1 mole always contains 6.022 × 10 ²³ particles, These particles may be atoms / molecules / ions / electrons/
	proton etc.

	1 mole of H atom = 6.022×10 H atom
	1 mole of CO2 molecule = 6.022×10^{23} co2 molecul 1 mole of K ⁺ ion = 6.022×10^{23} K ⁺ ion
	1 mole of K^{+} ion = 6.022×10^{23} K^{+} ion
	1 mole of es = 6.022 × 1023 es.
	1 amu = 1 x mass of C-12 atom
	$= 1.66 \times 10^{-24} g$
犬	For defining atomic masses of an element c-12 atom is taken as suference atom and mass of one c atom is exactly
	12 anu
	The second secon
-X	Atomic Mass = mass of Latom of an element (relative atomic mass) 1 x mass of C-12 atom
X	Atomic Mass = mass of Latom of an element (relative atomic mass) 1 x mass of C-12 atom 12 Atomic Mass = Mass of 1 atom Lamu
X	: Atomic Mass = Mass of 1 atom
*	: Atomic Mass = Mass of 1 atom Lamu Atomic Mass of few elements:
i)	: Atomic Mass = Mass of 1 atom 1 amu Atomic Mass of few elements: Hydrogen: 1 Helium:
*	: Atomic Mass = Mass of 1 atom 1 amu Atomic Mass of few elements: Hydrogen: 1 Helium: 4
i) ii)	Atomic Mass = Mass of 1 atom I amu Atomic Mass of few elements: Hydrogen: Helium: Lithium:
i) ii) iii)	: Atomic Mass = Mass of 1 atom 1 amu Atomic Mass of few elements: Hydrogen: 1 Helium:
i) ii) iii) iv)	Atomic Mass = Mass of 1 atom Lamu Atomic Mass of few elements: Hydrogen: Helium: Lithium: Beryllium: Boron: Carbon:
i) ii) iii) iv)	Atomic Mass = Mass of 1 atom Jamu Atomic Mass of few elements: Hydrogen? Helium: Lithium: Beryllium: Boron: Carbon:

(x)	Huosine:		
x)	Neon:		
xů)	Sodium :	23	
xů)	Magnesium:		
xiii)	Alaminium:		
xiv)	Silicon:		
xv)	Phosphorus:		
XVi)	sulphus:	32	
XVii)	cheorine:	35.5	
xviii)	Asgon:		
xix)	Pobassium:		
XX)	Calcium:	40	
xxi)	scandium:		
xxii)	Titanium:		_
(iii)	Vanadium:		_
xxív)	. Chromium:		
(xx)	Manganese:		_
(XVî)	Iron :	56	
(xvíi)	Cobalt:		_
oxviii)	Nickel:		-
xxix)	copper:	63.5 63.5	_
Xxx)	Zinc ?		
	Mercury: 200 Silver: 108		
	Bromine: 51		_
	20 dine: 127		
	re	1	

103

Aim4aiims.in

	Gram atomic Mass:
	1 amu = 1 x (mass of c-12 atom)
	$= 1.99 \times 10^{-23} g = 1.66 \times 10^{-24} g$
大火	$1 \text{ amu} = 1 \text{ g}$ NA $12g = NA \times 12 \text{ amu}$ $1g = NA \times 1 \text{ amu}$
	gram atomic mass (Molas Mass) It is the mass of 1 mole atom expressed
	in the gram
6	10-atom = 16 amu
	1 mole of 0- atom = 16 anux NA
	= 16 × 1 g × NA NA
	= 16 g
	1 Al- atom = 27 amu
	1 mole of Al - atom = 27 amu x NA
	$= 27 \times (1.66 \times 10^{-2} g \times 6.022 \times 10^{-2} g \times 10^{-2} g \times 6.022 \times 10^{-2} g \times 10^{-2} g$
	1 mole of Al - atom = 27 amu x NA = $27x(1.66 \times 10^{-2} \frac{4}{9} \times 6.022 \times 10^{-2})$ = $27x + 9 \times 6.022 \times 10^{-2}$ 6.022×10^{-23}
-	$= 27 \times 19$ $= 279$
,	- x1-g

	Molecular Mass:	
	It is the sum of masses of all the	
	It is the sum of masses of all the atoms present in one molecule	
ŧ	Relative Molecular Mass: Et is the no.	
	which indicates that a molecule is	
	how many times heavier than 1 part	
-	mass of C-12 atom	
	eg: $CO_2 \Rightarrow 12 + 32 = 44$ amu	
	NH3 = 14+3 - 11 and	
	SO3 ⇒ 32 + 48 = 80 amu	
	H ₂ SO ₄ ⇒ 2 + 32 + 64 = 98 amu	
	Gran Molecular mass (Molas mass)	
	It is the mass of I mole molecules	
	in gram.	
	eg: 1 H20 molecule = 18 amu	
	I mole of H20 molecule = 18 amux NA	
	= 18 × 1 9 × NA	
	= 18 × 1 g × NA NA = 18 g	
	= 189	
=	It is also known as molar mass because	
	it is the mass of I mole substance	
	eg: 1 mole of H25B4 = 989 (Molas mass)	
	1 mol atom	
	J	
	6.022 X 10 ²³ GAM 19 atomic mass) 19 atom	

	1 mol Molecule		
	T		
	6.022×10 ²³ GMM	1 g molecul	
	Molecule Gram molecular ma		
**	In modern practise, mol is	also known a	
	- gram atom (1 mol atom)		
	- gran molecule (1 mol molecule)		
	- gram ion (1 mol ion)		
	- gram molecule (1 mol molecule) - gram ion (1 mol ion) - gram mol. (1 mol)		
	eg: 5 g atom of nitrogen = 5 g nitrogen aton 5 moi nitrogen atom = 5 g nitrogen aton		
	: 5 g atom of nitrogen = 5 mol		
Q. 5	Find the mass of the follow	wing:	
<i>i</i>)	2.5 g molecule of soz		
	= 2.5 mole of SO2 atom		
	= 2.5 x (32+32)		
	$= 2.5 \times 64 = 160 g$		
ii)	0.2 g of atom of 0		
	= 0.2 g atom of 0		
	= 0.2 mol of 0		
	= 0.2 x 16 = 3.2 g		
iii)	5 g ion of Nat		
	= 5 mole of Nat		
	$= 5 \times 23 = 115 $		

ív)	$2 g$ molecule of sugar $(C_{12} H_{22} O_{11})$ = $2 \text{ mole of } C_{12} H_{22} O_{11}$ = $2 \times 342 = 684 g$
	= 2 mole of C12 H22 O11
	$= 2 \times 342 = 684 g$
	V
v)	1 g molecule of cuso4. 5H2O
	= 1 mou of cuso4. 5 H20
	$= 1 \left[63.5 + 32 + 64 + (5 \times 18) \right]$
	= 249.5 g
	V
*	Hence, Mole is also defined as the amount of substance that have mass equal to its gram atomic mass/gram molecular mass
V	of substance that have mass equal to
	its gram atomic mass/gram molecular mass
	*
2	Salculation of mole if mass of the substance is given:
	substance is given:
	Mol(n) = Mass of the substance (gm)
	Molar Mass
*	Mol(n) = govennemass (gm) Molas mass
	Molas mass
	$n = \omega$
	M
6	Find the no. of moles present in log of
	saco ₃
	Mol (n) = given mass
	molar mass
	$\frac{10 q}{(40 + 12 + 48) q} = \frac{10}{100} = 0.1 \text{mol}$
	The state of the s

Q.7	Find the no of moles present in 15.69
1	Of C6 H6
	Mol (n) = given mass
	Molas mass
	= 15.6 9
	(72+6°) g
	= 15.6 = 0.2 mol
	78
11	
0/8	Find In the 49 gm of H2SO4 sample
i)	no of moles
ii)	no of molecules
'iii)	no of atom
ův)	no g es
ů)	Mol (n) = given mass (gm)
	Molar mass
	= 49 9
=	(2+32+64)g
	= 49 = 1 = 0.5 mole.
	98 2
ii)	: 1 mol = 6.022 x 10 ²³ molecules
	:. 0.5 mol = 0.5 x 6.022 x 10 ²³ molecules
	= 3.09 × 10 ²³ molecules.
iii)	" molecule = 0.5 x NA
	: no of atom = 0.5 x NA × no of atoms in 1 molecule.
	= 0.5 x NA X 7 atoms
- 122	$= 0.0 \times 7 \times 6.022 \times 10^{23} \text{ atoms}$
	$= 0.5 \times 7 \times 6.022 \times 10^{2} \text{ atoms}$ $= 21 \times 10^{23} \text{ atoms}$
	= 2.1 × 10 ²⁴ actoms

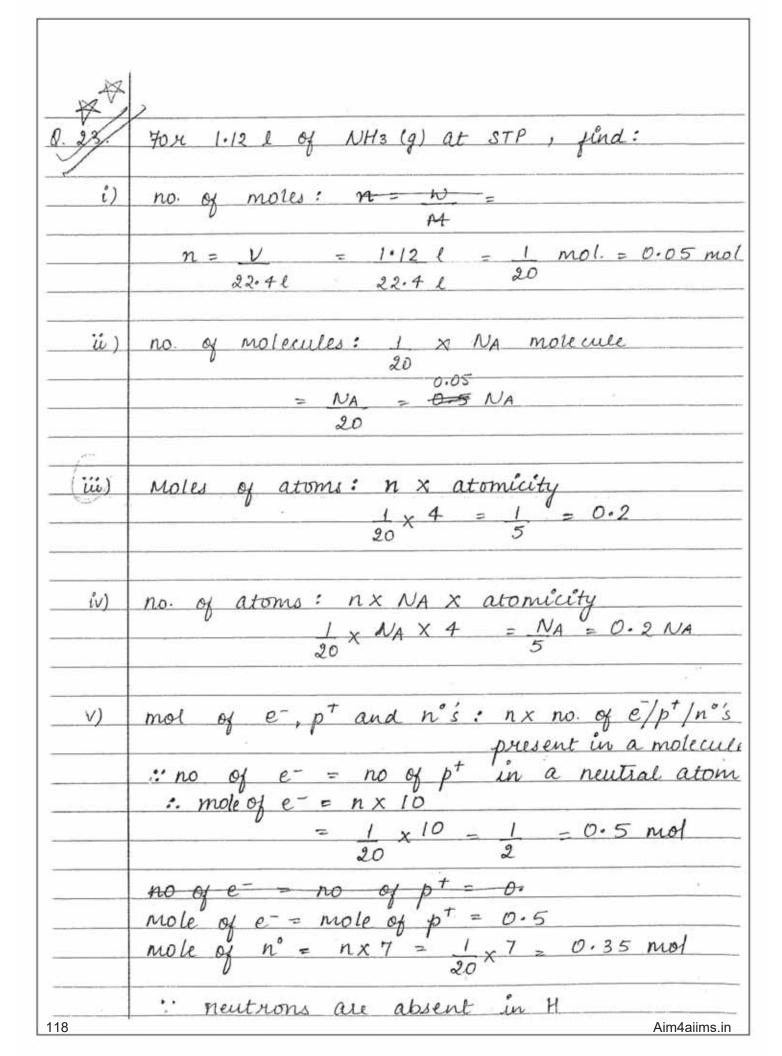
	" 1 molecule = 0.5 x NA
	: no. of e's = 0.5 x NA x no. of e- in
	one molecule
	= 0.5 x NA x 50 (2-15 + 32)
	= 25 × 6.022 × 10 ²³ e-s
-	$= 25 \times 6.022 \times 10^{23} e^{-5}$ $= 150 \times 10^{23} e^{-5}.$
	Find the mass of 3.01×1022 molecules of
	NH3
	no of moles in 3.01 × 10 22 molecules = 1
	[: 1 mole = NA molecules] N,
	: 1 molecule = 1 mole
	1
	$= 3.01 \times 10^{22} = 1 \text{ mol.}$ $6.02 \times 10^{23} = 20$
	6.02 × 10 ²³ 20
	OR
	n = no of particles
	NA '
	$= 3.01 \times 10^{22} = 1 \text{ mol}$
	6.02 x 10 ²³ 20
	: n = given mass
	Molar mass
	1 = N
	20 (14+3)
	" W = 17 = 0.85 g.
	20
	How many copper atoms are present
+	in 0.635 g of Cu peece
_	mol(n) = given mass
	Molai Mass

	$n = \omega$
	M
	= 0.635 g = 1 = 0.01 mol $63.5 g = 100$
	": I mole = NA atoms
	$0.01 \text{ mole} = 0.01 \times 6.022 \times 10^{23} \text{ atoms}$ $= 6.022 \times 10^{21} \text{ atoms}$
	OR
	Atomic weight of $Cu = 63.5$ g (Molar Mass) $: 63.5$ g has 6.02×10^{23} cu atoms $: 1g$ has $= 6.02 \times 10^{23}$ cu atoms
	63.5
	Hence, 0.635 g has 6.02×10 ²³ × 0.635
	= 6.02×10 ²¹ cu atoms.
Q. 11 ()	Find the no of Helium atom present in
	n = N = 100 anu 25 $M = 4$
_ii)	$n = \frac{100 \text{ g}}{M} = \frac{100 \text{ g}}{49} = 25 \text{ mole}.$
	"no of atoms = 25 x NA
Q. 12	which of the following has maximum no.

ť)	8/ 0 7/ 0
3,000	36 9 04 2
ii)	
iii	28 9 04 N
iv)	· Control of the cont
	Ans) i) 36 g of c
	Le as Decause
,	$n = \omega = 36 = 3 \text{ mol} = 3 \text{ NA atom}$ $M = 12$
•	$n = \omega = 54 = 2 \text{ mol} = 2 N_A \text{ atom}$ $M = 27$
•	n = w = 28 = 2 mol = 2NA atom $M = 14$
e	All aren't same
	PV= nRT where $n = no$, of mole and. $R = gas$ constant = 8.314 J mol ⁻¹ K^{-1} = 1.987 \simeq 2 cal mol ⁻¹ K^{-1}
	= 0:0821 -l- atm mot-1 K-1
*	Vol ^m of 1 mole gas at STP or NTP $T = 273 \text{ K} \text{ and } P = 1 \text{ atm}$
	: volume of 1 mole gas (n=1) V= nRT = 1 x 0.082 x 273
-	
	= 22.4 l
+	= 22400 ml
	(Molas volume)

Aim4aiims.in

	Hence, I mole of any gas occupies 22.4 l as volume at NTP or STP. This is also known as Molar volume.
*	Mol (n) = volm of gas at STP of NTP
文	n = V(ml) 22400
Q. 13	Find the no of moles present in.
į)	5.6 l NH3 (g) at STP :: $n = V = 5.6 l = 0.25 mol$ 22.4 l $22.4 l$
ü)	$44.8 \ L \ CO_2 \ (g) \ at \ NTP$ $\therefore \ n = V = 44.8 = 2 \ mol$ $22.4L \ 22.4$
1	$1.21 \ l \ 02 \ (g) \ at \ NTP$ $1.21 = 0.05 \ mol$
¥	22.42 22.4
Q. 14	Find the volume of 128 g SO2 (g) at STP : n = given mass # Molas mass = 128 g = 128 g = 2 mol.
	$= \frac{128g}{(32+32)g} = \frac{128g}{64g} = \frac{2 \text{ mol.}}{64g}$ $\therefore \text{ in } = \frac{V}{22.42}$
112	Aim4aiims.i


	: V= nx 22.4 l
	= 2x 22.4 l
	= 44.81
5	Find the mass of 11.2 l of CH4 (g)
	at STP
	n = V = 11.21 = 1 mol. 22.41 = 2.41 = 2
	2 x + 1 2 x 2 - 1 2
	n = w M
	I = W
	2 12+4
	1. W = 16 = 89
16	Find the no. of moles present in 18 water at STP (density of water = $1g/me$) $n = V$ will not be applicable 22.4
	because it's only for water gases.
	: density = Mass
	volume .
	: m = d x V
	= 1 g x 1000 ml
	me
	= 1000 g.
	: n = given mass = 1000 g = 55.5 mol.
	molar mass 18 g
	= 55.5 mol.

Q · 17.	find the no of protons present in
	180 ml of H20
	; d = M
	V
	= m = dxv
	= 1 g x 180 ml
	me
	= 180 g
	: n = given mans
	: n = geven mass molar mass
	= 180 g = 10 mol
	18 9
	" no. of molecules = 10x NA
	: no. of protons = 10 × 10 × NA
· ·	= 100 NA
	100 707
文文	Conclusion:
	no of particles no of particle
	The of particle
	÷ NA XNA
	Mass of substance → MOLE ×M > Mass of substance
	mass of substance
	± 22.41
	÷ 22.41 × 22.41
	volm of gas at STP(e) volm of gas at STP(e)
	volm of gas at STP(E) volm of gas at STP(E)
*	

*	Calculation of mole if molarity and
1	volume of substance is given:
	volume of substance is given: solution is given:
	Mole (n) = Molarity (M) x vol m(v)
	i.e. $n = M \times V(u)$
	:. M = n
	vw
. 18	Find no of moles of solute present in
	Find no of moles of solute present in 51 solutions of 0.2 molas concentration.
	: n = M X V
	= 0.2 x 5l
	= 1 mole
	Relation ?
	1 Mol - Molas Mass
	6.023 × 10 ²³ particles -> volm of gas
	at STP (22.41)
0.19	Identify the element with maximum no.
	of horecules:
<i>i</i>)	5.6 l NH3 (g) at STP
<i>ii)</i>	1.2 L CO2 (g) at STP
lii)	2.24 l 02 (g) at STP
ův)	4.48 l H2 (g) at STP
€	Ans) () 5.6 l NH3 (g) at STP
	It is because of the following:

i)	": n = V(e) = 5.6 = 1 mole
	22.46 22.4 4
	:. no of molecules = NA molecules.
li)	$:: n = V(\ell) = 1.2 = 1 \text{ mole}$
	22.4 19 :. no. of molecules = NA molecules 19
iii)	$n = V(\ell) = 2.24 - 1 \text{ mole}$
	22.4 l 22.4 10 : na of molecules = NA molecules
ů)	n = V(l) = 4.48 = 1 mole 22.42 5
	: no of molecules = NA molecules 5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Q. 20 i)	Which contains maximum no of molecule 28 g of N2
ii)	32 g of O2
iii)	64 g of SO2
iv)	8 g of H2
	Ans) iv) 8 g of H2 It is because.
i)	molecules = NAXn = NAX28 = NA molecules
ú)	$\frac{28}{\text{molecules}} = N_A \times n = N_A \times 32 = N_A \text{ molecules}$
iii)	molecules = NAX N = NAX 64 = NA molecules

iv)	molecules = NAXn = NAX8 = 4 NA
-	· · · 4 NA > NA
权	, TNA / NA
2/	Find the no of mo atoms present in
î)	6.02 × 10 ²²
ii)	1.0 × 10
iii)	1. 8 × 18 10
(v)	1×10^{23}
	Ans) iii) 1.8 x +0 23
	no. of molecules = NAX n
	no. of molecules = $N_A \times n$? no. of atoms = $N_A \times n \times$ atomicity
	$= 0.1 \times (3) \times NA$ $= 0.3 \times 6 \times (0^{23})$
	= 0.3 x 6 x 10 ²³
	= 1.8 × 10 ²³
	Here atomicity = 3 because when gas is not specified it is considered as
	not specified it is considered as
	monoatomic i.e. ideal.
6.	For 42 g of N^{-3} , find: no. of N^{-3} ion n = given mass = 42 g = 3 mol.
()	no. of No ion
	Molar Mass 14 g
	4
ii)	Moles of e's and pts.
	$e^-s \Rightarrow n \times no \text{ of } e^- = 3 \times 10 = 30 \text{ mol } e^-$
	$p^{\dagger}s \Rightarrow n \times no \ of \ p^{+} = 3 \times 7 = 21 \ mol \ p^{+}$
iii)	No. of es and pts.
- 1	no of e's ⇒ nxNA x no. of e = 3 x NA x 10 = 30 NA

	= 176 g = 4 mol
24	From 176 g of CO_2 , 903×10^{23} moleculus are sumoved, find mole of CO_2 left. -Initial mole $(n) = w$
x)	no. of H-atom: n x NA x atomicity of H = 1 x NA x 3 = 0.15 NA 20
íx)	no. of N -atom: $n \times N_A \times$ atomicity of N $= \frac{1}{20} \times N_A \times 1 = 0.05 N_A$
viú)	Mol of H atom: $n \times atomicity$ of H $= \frac{1}{20} \times 3 = 0.15 \text{ mol}$
/ii)	mol of N- atom: $n \times atomicity$ of N = $1 \times 1 = 0.05$ mol $\frac{1}{20}$
	$no. of n° = n \times N_A \times 7$ $= 1 \times 7 \times N_A = 0.35 N_A$ $= 20$
	$no. of e^{-} = no of p^{+} = n \times NA \times 10$ = $1 \times 10 \times NA = 0.5 NA$ 20
ví)	no of e-s, p+s and n's: n x NA x no of e-/p+/n° in a molecule

	$= \frac{44 \times 9.03 \times 10^{23}}{6.023 \times 10^{23}} = 669$
	Remaining Mass = $176 g - 66 g = 110 g$: 1 mole = $44 g$ of CO_2
	: 19 of CO2 = 1 mole
	1! 44
	Hence 1100 of 100 = 110 mole
	Hence, 1109 of CO2 = 110 mole
	Hence, 110 g of CO2 = 110 mole
	Hence, 110 g of CO2 = 110 mole
	Hence, 110 g of CO2 = 110 mole
	Hence, 110 g of CO2 = 110 mole
	Mence, 110 g of CO2 = 110 mole
	110 g of 602 = 110 more
7-3	44
	44
	4-4
	4-4
	4-4
العدد عدد	. 44
	- 9.5 mal
	= 2.5 mol
1 9-	Man manny many it would have to
0.25	How many years it would take to spend I mol Rs @ 10 lac per second. :: 1 mol Rs = 6.023 × 1023.
,	The state of the s
	10000
	spend I mol Ks (a in lac nes second
	apour since to the per security.
	23.
- 3	l = l + n n l + l = l + n n n n n n n n n n n n n n n n n n
	- I MUL NS = 6. 0x3 x 10
- 1	: Rs spend in one year = 10 x 60 x 60 x 24 x 365
	: Ks spend in one 1100x = 10 x 60x60x24 x 365
-	- no epitua we one year - w 10016012 11 303
	1
- 1	: no of years = 6.023 x 1023
	., 100 of years = 6.023 x 10
	6 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	10 210 2102 11 2365
	10 460 460 4 24 4 3 6 3
	10 10 10
	$= 6.023 \times 10^{14} 1.9 \times 10^{10} \text{ UM}$
	$= 6.023 \times 10^{14} - 1.9 \times 10^{10} \text{ yrs}$
	$= 6.023 \times 10^{14} - 1.9 \times 10^{10} \text{ yrs}$
0	$= 6.023 \times 10^{14} - 1.9 \times 10^{10} \text{ yrs}$ 31,536 Aim4aiim

	Vapour Density (Relative density)
0	It is defined for only gases and vapou
6	It is defined for only gases and vapour It is the velocity density of hydrogen as any gas relative to density of hydrogen at same pressure and temperature
长	February 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Vapous density = density of gas density of hydrogen
	density of $H_2 = 0.089 g/l$ = $0.089 \times 10^{-3} kg/l$ = $0.000089 \times g/l$
	$= 0.089 \times 10^{-8} $ $= 0.000089 \times 011$
0	It is unitless
	** 01/ n 0 T
	: P = nRT : P = nRT
	V
	= (N)RT : n = N
	MV L M J
-	P = d RT where d= density
	* * * : d = PM
	44 RT
	: Vapour density = PMgas at consta
-	RT Pand T
	PM(Hz)

	: V.D. = Mgas = Mgas
	MH2 2
	MH2 2 -X: Mgas = 2x VD
Q.26	Find the vapous density of SO3 and O2 g. "! Mgas = 2×VD ": VD = Mgas = 48 + 32 2 2
	: VD = Mgas = 48 + 32
	= 80 = 40
	2
	$VD(so_3) = 80 = 40$
	VD(02) = 32 = 16
	2
8.27	2
8.27	Find the molecular weight of the gas whose V.D is 32
8.27	Find the molecular weight of the gas whose
8.27	Find the molecular weight of the gas whose V.D is 32 : Mgas = 2x V.D = 2x 32 = 64 g
18-27	Find the molecular weight of the gas whose v.b is 32 "Mgas = 2x V.D
Q. 28	Find the molecular weight of the gas whose $V.D$ is 32 $Mgas = 2 \times V.D$ $= 2 \times 32 = 64 g$ Hence, the gas SO_2 gas Which of the following gas has $VD = 8$
Q. 28 ()	Find the molecular weight of the gas whose v.b is 32 Mgas = 2x VD = 2x 32 = 64 g Hence, the gas So; gas Which of the following gas has VD = 8 CO
Q-28 () (i)	Find the molecular weight of the gas whose v.b is 32 "Mgas = 2x VD = 2x 32 = 64 g Hence, the gas So; gas Which of the following gas has VD = 8 CO CH4
Q- 28 () ii) iii)	Find the molecular weight of the gas whose V.D is 32 : Mgas = 2x V.D = 2x 32 = 64 g Hence, the gas SO; gas which of the following gas has VD = 8 CO CH4 SO;
Q-28 () (i)	Find the molecular weight of the gas whose V.D is 32 : Mgas = 2x VD = 2x 32 = 64 g Hence, the gas SO; gas which of the following gas has VD = 8 CO CH4 SO; O2
Q- 28 () ii) iii)	Find the molecular weight of the gas whose V.D is 32 Mgas = 2x V.D = 2x 32 = 64 g Hence, the gas SO; gas Which of the following gas has VD = 8 CO CH4 SO; O2 Ans) (ii) CH4
Q- 28 () ii) iii)	Find the molecular weight of the gas whose v.b is 32 "Mgas = 2x VD = 2x 32 = 64 g Hence, the gas So; gas Which of the following gas has VD = 8 CO CH4 SO; O2 Ans) (i) CH4 "Mgas = 2x VD
Q- 28 () ii) iii)	Find the molecular weight of the gas whose V.D is 32 Mgas = 2x VD = 2x 32 = 64 g Hence, the gas SO; gas Which of the following gas has VD = 8 CO CH4 SO2 O2 Ans) (ii) CH4 Mgas = 2x VD = 2 x 8
Q. 28 () ii) iii)	Find the molecular weight of the gas whose v.b is 32 "Mgas = 2x VD = 2x 32 = 64 g Hence, the gas So; gas Which of the following gas has VD = 8 CO CH4 SO; O2 Ans) (i) CH4 "Mgas = 2x VD

	22.4l = 1.4-9/l
	volume volume = 32 g
	: density = Mass = GMM
ii)	Find the density of 1 mole of 02 gas
	$=\frac{5}{4}gll=1.25g/l$
	= 28 g 22. 4 l
	volume volume
	: density = Mass = 9MM
í)	Find the density of 1 mole of N2 gas at STP.
0	Find the density of 1 mole at S.T.P
	:. n = 5
	= 140 g = 5.
-	total mass
	n = given mase
	$Mgas = 2 \times VD$ = 2 × 70 = 140 g
	(CO)n Linose V.D. = 70
29	Find the value of n in a given compound
	16 + 16 = 32 g
	32 + 32 = 649

<u> </u>	1 mole of H-atom = 1 mole of H2D at STP
	= 100 mole of H - atom = 1 x 100 mole of H20 at 5
	$= 50 \text{ mole of } H20 \text{ at STP}$ $\therefore n = w$
	M 56 1 12 - n x 11
	$50: W = n \times M$ = $(50 \times 18) g$
T at	= 900 9
Ø.32	Calculate no of chloride lons present in 1.11 gm of Cace2 "mole (n) = given mass (g)
	Molas Mass (g)
	- 1·11 = 1·11 40+71 111
	= 1 mole
	100
	no of molecules = n x NA
	$= 1 \times NA = NA$
	100
	· no of clions = NA x 2
	= NA

	": n= 0.5 mol
	no. of molecules = 0.5 x NA
	: no. of ions of PO43- = 0.5 × NA × 2
	$= 1 \times NA = NA$
34	Find the no. of moles of caco3 which contains
	: 3 moles of 0: - atom = 1 mole of caco3 : 1 mol of 0- atom = 1 mole of caco3 3
	12 mole of 0- atom = 1x12 mole of CaCO3
	= 4 moles of Caco3
35	Two elements A and B forms same 2 compound
	Mass of 0.1 mole of AB2 = 59 and
	Mass of 0.1 mole of A2B = 5.5 g
	then find atomic weight of A and B.
	n = N
-	M
	$\frac{1}{n} = \frac{N}{n} = \frac{5g}{50g} = \frac{50g}{50g}$
	0.1
	A + 2B = 50g - (1)
	$n = \omega$
	M
	M = W = 5.5g = 55g
	n 0.1
	2A + B = 50 55 g - B

Aim4aiims.in

	1 - 50 0 00
	A = 50 g - 2B Putting value of A in eq (1) 2 (50 g - 2B) + B = 55 g = 100 g - 4B + B = 55 g
	2 (500 = 2A) + B = 550
	2 100 A - 4B + B = 550
	= 100 g - 75 7 B - 55g
	= 100g - 55g = 4B - B. $= 45g = B$
	A = 50g - 2x 15g $= 50g - 30g = 20g$
	$A = 509 - 2 \times 159$
	= 50g - 30g = 20g
9.36	In an experiment, 0.2 gm of volatile liquid on vapourisation gives 56 ml of vapour at STP then find moleculas
	liquid on vapourisation gives 56 ml of
	vapous at STP then find moleculas
	weight of liquid
	: mol (n) = V(me)
	22400 ml
	= 56 ml
	22400 nl
	= 1 mol
	460
	1. 1 mol = 0.2 g
	: 1 mol = 400 × 0.2 q
	= 80 g
	OR 9
	56 ml of vapour = 0.2 g
	:. 1 ml of vapour = 0.2 x 5 g
	56
	: 22400 ml of vapour = 0.2 x 22400
26	> 80 g Aim4aiim
	7

*	Actual or Absolute weight:
٧	It is the mass of single atom or
	It is the mass of single atom or single molecule represented in gram
	J.
	eg: 1 H-atom = 1.008 amu Relative
	atomic mass
	Actual Mass = 1.008 x 1 9
	Tame Tass - 1.008 x ng
	= 1.008 × 1.66 × 10 - 24 g
	$= 1.67 \times 10^{-24} g$
	= 1.6/x 10 g
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
	eg: 1 molecule of H20 = 18 amu Relative
	(atomic mass
	Actual Mass= 18 × 1 g
	N _A
	= 18 x 1 = 9
-	6.022×10 ²³
	$= 18 \times 1.66 \times 10^{-24} g$
	$= 29.9 \times 10^{-24} g$
11	/ · · · · · · · · · · · · · · · · · · ·
10	Formula association:
24	M.
•	n = no. of particles = given mass = vol (e)
	NA. rootas mass 22.4 l
	no, of molecules = n x NA
•	no. of atoms = nxNAx no of atoms
	in a motecule
	no. of etpt/nº/cons = nx NAX. no. of
	e-/p+/nº/ions in a molecule
	no. of e-/p+/n°/ions = n x NA x no. of e-/p+/n°/ions in a molecule rule of atom/e-/p+n°/ions = n x atomicity Mgas = 2x v D.
· ·	A STATE OF THE STA

	Laws of chemical ronservation:
1.	Laws of conservation of mass: It was given by Lavoisier (father of chemistry) and experimentally proved by Landolt.
	It states that during any physical or chemical change, total mass of the substances remain constant means masses can neither be created nor be destroyed.
•	For chemical reactions, Jotal mass of reactants = mass of product
	ex substances do not react completely Mass of reactant = Mass of product + Mass of remaining reactants
*	This law is not applicable for nuclear reaction. energy + mass = constant
	Landolt experiment:
	Landou tube

	initial total mass = x a
	initial total mass = x g pinal total mass = x g
	: Nacl (ag) + Ag NO3 (ag) -> AlCles) & + Na (white Precipitate)
7	Find the mass of co2 produced when 50 g of Caco3 decomposes to give 28 g of cao
	$A \cap C \cap $
	$50g = 28g + \chi g$ $30g = 28g + \chi g$ $28g + \chi g$ $28g + \chi g$ $28g + \chi g$ $28g + \chi g$
	Law of definité proportion: It was given by Proust.
	It states that composition and chemical compound (by weight) always remain constant whether it is obtained from any source or any method
ŧ	It is not applicable for isotops and
	non-stoichormetric compound. eg: isotops: 12 co2 and 14 co2
	12:32 and 14:32
_	H ₂ O and D ₂ O
	2:16 and 4:16

6	eg: Interstitial compound: [Fe 94 0100] of [Fe 0.94 0]
	and
	[Fe 96 0100] or [Fe 0.960]
	eg: CO2
	12:32
	3:8 by Mass
	and
	H ₂ 0
	2:16
	1:8 by Mass.
Q.38	In an experiment 4g of cu combines with oxygen atom to form 6 g of cuo and in another experiment 3.3 g of cuo decomposes to give 2.2 g of cu. From the above data. Illustrate the law of
	definité propostion of cu.
	Sase I: cu + 0 -> cu0
9	$4g + \chi g \longrightarrow 6g$ $\therefore \chi g = 6g - 4g = 2g$
	sase II: cuo -> cu + o
	$3.3 q \longrightarrow 2.2 q + \chi q$ $\therefore \chi q = 3.3 q - 2.2 q = 1.1 q$ $\therefore W_{11} = \frac{3.3}{2.2} = 2 = 2:1$
	: Wen = 3-3 2.2 = 2 = 2:1

Γ

3.	Law of Multiple Proportion:
	It was given by salton
	or man graces of
	It states that " If two elements combine
	to form more than one compound
	then different masses of one element
	combine with fixed mass of another element always bears a simple whole
	element always bears a simple whole
	no. ratio with one-another!
	eg: 4 and 0
	1 + 120 = 2:16
	$H_2Q_2 = 2:32$
	: Ratio of mass of 0 = 1:2
4	
	eg: s and o
	SO ₂ = 32:32
	So ₃ = 32:48
	: Ratio of mass of 0 = 32 = 2 = 2:3
	48 3
*	This law is not applicable for isotops.
39	which of the following compounds
	which of the following compounds obeys laws of multiple proportion:
i)	NH3 and PH3
ii)	M20 and H2S
iii)	PU3 and PU5
iv)	HCL and HBA
3	Ans) iii) PC13 and PC15
	It is because multiple proportion involves

Q-40	If two elements x and y forms two
	compound in first compound 2g of x
	combine with 4g Y and in second compoun
	4g of x combine with 16g 4.
	If first compound,
	2g x combine with 4g Y
	1g x combine with 2g y
	In second compound,
	tg × combine with 169 Y
	: 19 of x combine with 49 y
	Ratio of weight of Y which combine
	with 1 g of x is 2 ie 1:2
	4
4.	Law of gaseous volumes:
	It was given by Gay Lussac
	It states that gases combine with each other in simple ratio of their
	each other in simple ratio of their
	volume and at similar condition of
	temperature and pressure?
Q. 41	Find the volume of 02 required for
	complete combustion of 40 me of C2H2 (g)
	Acetelene gas. Find the volume of CO2
	produced at constant temperature and
	pressure
	2C2H2gjt 502g) -> 4C02gj+ 2H2010
	(2V) $(5V)$ $(4V)$
	Ratios of their amount:
	1v 5 2 V 4 V 2
	28 2

	= 80 ml.
	Berzelius Hypothesis:
	'equal volume of all gases under similar conditions of temperature and pressure contains equal no of atoms.'
	eg: $H_2 + Cl_2 \longrightarrow 2HCl$ $1V : 1V \qquad 2V$ 1 atom: 1 atom 2 atom
	i.e. 1 atom : 1 atom 1 atom 2 2
	which is not possible as atoms can't be divided
•	Contradictions of Dalton's Atomic theory
	Avogadro's Hypothesis:

_	·: PV = nRT
	PV = constant
	nRT .
	For two gases A and B.
	(PAVA = PBVB) at constant
	na RTA nBRTB / T and P.
	:. PVA = PVB
	MART MART
	= : VA = VB
	n_A n_B
	If UA = UB
	: 1 = 1
	n_A n_B
	i.e. nA = nB.
	Hence, proved that it contains equal
	no of moles ie equal no of molecules
	at constant T and P at similar same.
	volume
	eg:
1. 42	If we have jour plack of equal capacity
. 4.	

	then find ratio of no of it motorilles
	and no of atoms of so molecules
	The ratio of four gases at constant
	T and P. gases at constant
	Ratio of no. of molecules = 1 : 1 : 1 : 1 and Ratio of no of atoms = 2 : 3 : 1 : 4
	Ratio of no of atomi = 9 : 2: 1: 1 and
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
43	Turo container of court
1	Two container of equal rapacity at
	constant temperature and pressure. 0.44 g
	of cosignombines with 0.20 g of x2 (g) $V_1 = V_2 \text{ find follows:}$
	· VI - V2 11-10 1-100 1-111 1-1111
	$n_1 = n_2$
	co2 (g): x2 (g)
-	moles of to3 co2 = given mass
	A7.4/A
	molay mass
	= 0.44 g = 1 mole
	= 0.44 g = 1 mole. 44 g 100
	= 0.44g - 1 mole. $= 0.01 mole$
-11:0	= 0.44 g = 1 mole. 44 g 100
	$= \frac{0.44 g}{44 g} = 1 \text{ mole.}$ $= 0.01 \text{ mole}$ $= 0.01 \text{ mole}$ $= 0.01 \text{ mole}$
	= 0.44g = 1 mole. $= 0.01 mole$ $= 0.01 mole$ $= 0.01 mole$ $= 0.01 mole$
	= 0.44g = 1 mole. $= 0.01 mole$
	= 0.44g = 1 mole. $= 0.01 mole$ $= 0.01 mole$ $= 0.01 mole$ $= 0.01 mole$
	= 0.44g = 1 mole. $= 0.01 mole$
	= 0.44g = 1 mole. $= 0.01 mole$
	= 0.44g - 1 mole. $= 0.01 mole$
	= 0.44g = 1 mole. $= 0.01 mole$
	= 0.44g = 1 mole. $= 0.01 mole.$
	= 0.44g = 1 mole $= 0.01 mole$

	Percentage composition:
Q. 44	& Find the percentage composition of constitu
	ent elements of $CaCO_3$. Mass of $CaCO_3 = 40g + 12g + 48g$ = $100g$
	: Poventage of calcium = 40 g x 100
	= 40 %. Percentage of carbon = 12g x 100 100g
	= 12%. Percentage of oxygen = $\frac{48g}{100g} \times 100 = \frac{48\%}{100g}$
*	Percentage composition refers mass of various constituents elements present in given compound by 100 parts of mass of by mass of compound.
	"/ of element = mass of element x 100 total mass of compound
本本本	% of element = no of atoms x atomic mass x 100 Modecular Mass
Q- 45	Fe 804. 7H20
	Mass of Fevrous suphate (hayavated): 569 + 329 + 649 + (29 + 169) 7
86	$= \frac{190 \text{ g}}{152 \text{ g}} + 126 \text{ g}$ $= 278 \text{ g}$ Aim4aiims.ii

7	Find the percentage of water crystallisation present in blue vitriol. (CUSO4.540)
	2 48%.
	% of 0 = 4x3x16 x 100
	- 24 ½.
	1. of S = 3×32 × 100
-	= 28%
	: % of Fe = 56 x2 x 100
	$= 1129 + 3 \times (8969)$
	$= 569 \times 2 + 3 \times (329 + 649)$
16	Find the percentage composition of Fez (SO4). Mass of Fez (SO4)3: = $56g \times 2 + 3 \times (32g + 64g)$ = $112g + 3 \times (896g)$ $112g + 288g = 400g$.
	% of H20: 126 g x 100 = 45.3% 278 g
	1. of H20: 126 g x 100 = 45.3%
	% of 0: 64 g x 100 = 23%. 278 g
	278 9
	% of s: 32 9 9 × 100 = 11.5 %
	:. % of 7e: 569 x 100 = 20.14%. 2789
	: / of 7e: 56g x 100 = 20.14/.

أحصصت	Mass of lus04. 5H20:
	= 63.5q + 329 + 649 + 5 (29 + 169)
	= 159.5 g + 5 × 18g
	= 159.5 g + 90 g
	$= 63.5g + 32g + 64g + 5 (2g + 16g)$ $= 159.5g + 5 \times 18g$ $= 159.5g + 90g$ $= 249.5g$
	: 1/. of H20 = 90 g × 100
	249.59
	= 90 g x 100
	≈ 90 g × 100 250g
	≥ 36 °/.
)_ 48	Find the value of x in Na2SO4. xH2O
1/1	It contains 50 % of H20
	Mass of Na2 SO4. x H20:
	Mass of Na ₂ SO ₄ . χ H ₂ O: $(23 \times 2) g + 32g + (16 \times 4) g + \chi (2g + 16)$
	= 469 + 329 + 649 + xx189
	= 1429 + 18x9
	": " of H20" = (18 x 2) 9 x 100 = 50
	$(142+18x)\hat{q}$
	(142 + 18x)g $= 2 (18x)g = (142 + 18x)g$
	$(142 + 18x)g$ $= 2 (18x)g = (142 + 18x)g$ $= 36 \times g = 142g + 18 \times g$
	(142 + 18x)g $= 2 (18x)g = (142 + 18x)g$
	$(142 + 18x)g$ $= 2 (18x)g = (142 + 18x)g$ $= 36 \times g = 142g + 18 \times g$ $\therefore 36 \times g - 18 \times g = 142g$
	$(142 + 18x)g$ $= 2 (18x)g = (142 + 18x)g$ $= 36 \times g = 142g + 18 \times g$ $\therefore 36 \times g - 18 \times g = 142g$ $= 18 \times g = 142g$
	$(142 + 18x)g$ $= 2 (18x)g = (142 + 18x)g$ $= 36 \times g = 142g + 18 \times g$ $\therefore 36 \times g - 18 \times g = 142g$ $= 18 \times g = 142g$ $\therefore x = 142g$
	$(142 + 18x)g$ $= 2 (18x)g = (142 + 18x)g$ $= 36 \times g = 142g + 18 \times g$ $\therefore 36 \times g - 18 \times g = 142g$ $= 18 \times g = 142g$ $\therefore x = 142g$ $18g$

	Mass of (COOH)2. 2H20:
	$2(12+16+16+1) + \times (2+16)$
	= 2(12+16+16+1) + x(2+16)g $= 2(45) + x(18)g$
	$= 90 + 18 \times 9$
	" / of H20 = 18xg x 100 = 28.5
	90 + 18x
	= 18xg x 100 = 28.5 (90+18x)
	$= 1800 \times g = 2565 + 513 \times g$
	$= 1800 \times g - 5/3 \times g = 2565$
	$= 12.87 \times g = 2565$
-	∴ x = 2565 = 1.99 ~ 2
	1287
_	
Q.50	Find the percentage of FeO present in
	Mass of fe304: $(3\times56)g + (16\times4)g$ = $168g + 64g$
	= 1689 + 649
	= 232 g
- 11	: % of FeO = (56+16)g x 100
	1. 0 = (38 1 10 74 X 100
	2329
	232 g 72 g × 100
	2329
	232 g 72 g x 100
	$ \begin{array}{r} 2329 \\ -729 \times 100 \\ \hline 232 \end{array} $ = $72009 = 31.039$ 232
	$ \begin{array}{r} 2329 \\ \hline 232 \\ \hline 232 \\ \hline = 72009 \\ = 31.039 \end{array} $
	$ \begin{array}{r} 2329 \\ -729 \times 100 \\ 232 \end{array} $ = $72009 - 31.039$ $ 232 $ $ 232 $
	$ \begin{array}{r} 2329 \\ -729 \times 100 \\ 232 \end{array} $ = $72009 - 31.039$ $ 232 $ $ 232 $
	232 g = 72 g × 100 232 = 7200 g = 31.03 g 232 ≈ 31 g Hind the minimum molecular weight of insulin which contains 3.2%, of Supports
	$ \begin{array}{r} 2329 \\ -729 \times 100 \\ 232 \end{array} $ = $72009 - 31.039$ $ 232 $ $ 232 $

	3.2 = 1 x 32 x 100				
	M				
	: M = 3200 = 1000 g.				
	3 · 2				
*	To calculate minimum molecular weight				
	of the compound.				
	: no of atom of given element = 1				
0.52	Find the minimum molecular weight				
	of haemoglobus which contains 0.25% of				
	Fe by Mass				
	:: % of Fe = 1 x no of atom x100				
	Molecular Mass				
	: 0.25 = 1 x 56 x 100				
	M				
	: M = 5600 = 22400 g				
	0.25				
Q. 53	A compound contains 20% of nitrogen by				
	mass . if molecular weight of compound i				
	140, then find no of Hydrogen present				
	N atoms present in the compound.				
	: " of N = no. of atom x atomic weight x low				
	Molecular weight				
	$20 = 9 \times 14 \times 100$				
	140				
	∴ x = 140 x 20				
	100 X 14				

	Empirical Formula (EF): It represents the simplest whole no ratio of atom of different element present in one molecule.						
	in one molecule.						
	Moleculas Formula (MF):						
	It represents	actual no of	atoms of				
	various elemen	actual no of	one molecule				
	Molecular	Empirical	n				
	pormula						
	(M.F)	formula (EF)					
i)	H2 O2	НО	2				
ů)	C6H12O6	CH2 0	6				
iii)	(C ₂ H ₄ O ₂)	CH20	2				
(v)	CH4	CH4	1				
X	: K MF	19=0 n X EnF					
		= tre intéger	8				
K		M.F. Mass					
	E. F. Mass						
	0.4						
,	Determination of Empirical journula:						
	Step 1: Find to	re percentage con	rposition of				
-	constitu	ent element pre	sent in				
-		compound.					

Step 2:	Percentage element is	compos divided	ition of its	each atomic
	mass/weigi atomic s	ht to ol	stain rula	tive mole
Step 3:	Divide the element be relative (It aires	moles.		
	prusent	in mol	ratio of	acoms
	then con by multiple possible	ying it	with me	rimun
eg: An compo	element as	ontains C 24%, 12%	. H and e	in the
compo	element co sition of % composition	24%, 12%	H and e and 64%.	en the respective simplest Ratio
compo	sition of	24%, 12%. Atomic	Relative	simplest
element	sition of	24%, 12%. Atomic weight	Relative Moles 24 = 2	simplest Ratio
element	sition of % composition 24%	24%, 12%. Atomic weight	Relative Moles 24 = 2	simplest Ratio 2 2 1 2 12 = 6

	: n = M. F mass							
	E.F Mass							
	= 100 9							
	(12 + 6 + 32)g $= 100g = 2$ $50 g$							
	J J							
	"! MF = n x EF							
			X CH602					
		i MF =						
		2004.4	1					
0.54	Find :	the empirica	l and	molecular	10 V marita			
,	of the	tollowing	company	di)			
	of the following compounds.							
	element	1. composition	Atomic	Relative	simples			
	weight		moles	rario				
			3		- Carlo			
	С	57.8 %	12	57.8 = 4.8	4.8 = 2			
		·		12	2.4			
	Н	3.6 %	1	3.6 = 3.6	3.6 _ 3			
				1	2.4 2			
	0.	38.6 %	16	38.6 - 2.4	2.4_1			
				16	2-4			
	<u></u>							
	E.F.							
	: simplest ratio of c, H and O							
	Hespectively = 2x2 3.2 1x2							
	H	Hespectively = 2x2,3x2,1x2						
	H	special ay -	2					
	Hl	1 12						
	Hl	1 12	4,30		V			

	B	50 %. 50 %. :: EF	weight 20 10 = AB2 OR	Relative Moles 50 = 5 20 2 50 = 5 10	Simplest Ratio $5 \times 2 = 1$ $5 \times 2 = 2$ $5 \times 2 = 2$ 5		
	A	50 %. 50 %.	weight 20 10 = AB2	Moles 50 = 5 20 2 50 = 5	Ratio 5 x 2 = 1		
	A	50 %. 50 %.	weight 20 10	Moles 50 = 5 20 2 50 = 5	Ratio 5 x 2 = 1		
	A	50 %.	weight 20	Moles 50 = 5 20 2	Ratio 5 x 2 = 1		
			weight	Moles 50 = 5	Ratio		
	element	% composition					
-	element	% composition	Atomic	Relative	Simplest		
	element % composition Atomic		Relative simplest				
	and A	tomic we	right of	B = 10	, u		
	50 % b	y mass	each. At	omic weig	pht of A = 2		
P.55.	which	ru. emper xontains	two ele	ruua of :	the compour		
	700 1 1	he mahi:	last in		4/10 1000 5		
			H6 04				
	,		C4 H3 02				
		MF = nx	FF				
	-	83					
		= _166					
	10		rass				
	21	= M.F MC		= 166			
	: Mgas = $VD \times 2$ = 166						
	: V.D = Mgas.						
			· · V, D = 83				

ſ

04.56	Find the simplest formula of compound						
	which	has equa	u mass	of x an	d Y. Atonic		
	weight	Find the simplest formula of compound which has equal mass of x and y. Atomic weight of x and y are 20 and 30					
	respectively.						
	element	% compo-	Atomic	Relative	simplest		
		sition	weight	Moles	Ratio		
	X	50 %	20	50 , 5	$\frac{5}{2} \times \frac{3}{5} = \frac{3}{2}$		
				20 2	2 5 2		
	У	50%	30	50 = 5	$\frac{5}{3} \times \frac{3}{5} = 1$		
			į	30 3	3 ^ 5		
		EF = X3Y	2				
			OR				
	simplest,	ratio = 5	0/20 =	3 : F	$F = X_3 Y_2$		
	$simplest ratio = 50/20 = 3 : EF = X_3Y_2$ $50/30 = 2$						
8.57							
Q·57		ous romp Nitrogen the simp					
8.57	A gase 2.34 g Find composu	ous romp Nitrogen the simp nd.	pound is and is	jound 5.34 g of umula of	to contain oxygen the		
Q·57	A gase 2.34 g Find composu	ous romp Nitrogen the simp nd. 1. compo-	ound is and is elest for Atomic	found 5.34 g of rimula of Relative	to contain oxygen the		
Q·57	A gase 2.34 g Find compositi element	ous romp. Nitrogen the simp nd. 1. rompo- sition	and is and is elest for Atomic weight	found 5.34 g of rimula of Relative Moles			
Q.57	A gase 2.34 g Find composu	ous romp Nitrogen the simp nd. 1. compo-	ound is and is elest for Atomic	sound 5.34 g of rimula of Relative Moles 2.34	to contain oxygen the		
Q-57	A gase 2.34 g 7ind compose element	ous romp. Nitrogen the simp nd. 1. compo- sition 2.34 g	and is and is alest for Atomic weight 14	found 5.34 g of rimula of Relative Moles 2.34	to contain oxygen the		
Q-57	A gase 2.34 g Find compositi element	ous romp. Nitrogen the simp nd. 1. rompo- sition	and is and is elest for Atomic weight	Relative Moles 2.34 14 5.34	to contain oxygen the		
Q-57	A gase 2.34 g Hind compose element	Nitrogen the simp nd. 1. composition 2.34 g	and is and is alest for Atomic weight 14	found 5.34 g of rimula of Relative Moles 2.34	to contain oxygen the		
8.57	A gase 2.34 g Hind compose element	Nitrogen the simp nd. 1. composition 2.34 g	and is and is dest for Atomic weight 14	Relative Moles 2.34 14 5.34	to contain oxygen the		
Q-57	A gase 2.34 g Find composite element	Nitrogen the simp nd. 1. composition 2.34 g 5.34 g	and is and is alest for Atomic weight 14 16 NO2 OR	Relative Moles 2.34 14 5.34	to contain oxygen the		
Q-57	A gase 2.34 g Find composite element	Nitrogen the simp nd. 1. composition 2.34 g	and is and is alest for Atomic weight 14 16 NO2 OR	found 5.34 g of mula of mula of Moles 2.34 14 5.34 16	to contain oxygen the		

Q-58	An iron oxide contains 70 % Fe by mass.						
	An iron oxide contains 70 % Fe by Mass. then find its empirical formula.						
	element	1. compo-	Atomic	Relative	simplest		
		sition	weight	Moles	ratio		
	Fe		56	70 = 1.25			
				56			
	0	30%	16	30 = 1.85			
				16			
	E	F = Fe20	3				
		satio =		2 .	EF = Fe203		
			30/16	3			
59	0	0	12.012.012		C a se		
2.59	In an organic compound c. H and N						
	in an	organic	compou	cha, c, H	ma n		
	are pr	went i	r the s	catio of 9:1	1:3.5		
	by we	isent is ight: Fine	n the s	catio of 9:1	a of the		
	by we	isent is ight: Fine	n the s	catio of 9:1	a of the		
	by we	isent is ight: Fine	n the s	catio of 9:1	a of the		
	by we	isent is ight: Fine	n the s	catio of 9:1	a of the oxinula		
	by we	isent is ight: Fine	n the s	catio of 9:1	a of the oxinula		
	by were compo	isent is ight: Fine und as u veight of	n the solution the cor	catio of 9:1 cat formul rolecular f npound =	a of the		
	by were compo	isent is ight: 7ing und as u weight of 1% compo-	n the solution of the cor	catio of 9:1 cat formul colecular coporund = Relative Moles 9 = 3	a of the oxinula 108 Simplest		
	by were compo	isent is ight: Fine und as u veight of % compo- sition	n the solver as a the cor Atomic weight	catio of 9:1 cat formul colecular f npound = Relative Moles	a of the oxinula 108 Simplest		
	by were compo	isent is ight: Fine und as u veight of % compo- sition	n the solver as a the cor Atomic weight	catio of 9:1 cat formul colecular coporund = Relative Moles 9 = 3	a of the oximula 108 Simplest satio 3 x 4 = 3 4 x 4 = 3		
	element	isent is ight: Fine und as u veight of % compo- sition	n the solver as a the cor Atomic weight	catio of 9:1 cat formul cation of 9:1 cat formul colecular conpound = Relative Moles 9 = 3 12 4	a of the oximula 108 Simplest satio 3 x 4 = 3		
	element	esent is ght: Fine und as n veight of % compo- sition 9	the solution the correct as a consideration of the correct as a correc	Relative Moles 1 = 1 1 = 1	a of the oximula 108 Simplest satio 3 x 4 = 3 1 x 4 = 4		
	element	isent is ight: Fine und as u veight of % compo- sition	n the solver as a the cor Atomic weight	catio of 9:1 cat formul colecular pround = Relative Moles 9 = 3 12 4 1 = 1	a of the oximula 108 Simplest satio 3 x 4 = 3		
	element	esent is ght: Fine und as n veight of % compo- sition 9 1 3.5	the solution the correct as a solution to the correct as a solution to the sol	Relative Moles 12 1 1 1 1 1 1 1 1 1 1 1 1	1:3.5 a of the Orinula 108 Simplest satio 3 x 4 = 3 1 x 4 = 4		
	element	isent is ight: Fine und as a veight of composition 9 1 3.5 E.F = C31	the solver as a the cor Atomic weight 12 14	Relative Moles 12 1 1 1 1 1 1 1 1 1 1 1 1	1:3.5 a of the Orinula 108 Simplest satio 3 x 4 = 3 1 x 4 = 4		
	element	esent is ght: Fine und as n veight of % compo- sition 9 1 3.5	the solver as a the cor Atomic weight 12 14	Relative Moles 12 1 1 1 1 1 1 1 1 1 1 1 1	1:3.5 a of the Ormula 108 Simplest satio 3 x 4 = 3 1 x 4 = 4		

	Simplest ratio: 3:4:1 "" "" "" "" "" "" "" "" ""							
60	Calcula	to the o	empiricae	formula of 7	the			
	Longou	10. 26.6	Fr which	contains 26.	6% DL			
	1 7 , 35	2.4/.01	My and	38.1 % 01 0	Find			
	the en	specical	pormula	of the comp	ound.			
		1. compo			1 .			
		sition	1	Relative	simples			
		- CCLIOTC	weight	Moles	Satio.			
	K	26.6	39.1	26.6 = 0.68	1			
				39.1				
	L4.	35.4	52	35.4 = 0.68	1			
				52				
	0	38.1	16	38.1 = 2.38	3.5			
				16				
	· simp	lest na	tio of 1	k, c4 and 1	5			
	: simplest ratio of K, C4 and 0 respectively = 1×2, 1×2 and 3.5×2							
	2 2, 2 and 7							
	: EF = K2 C12 07							
	Find th	e simple	st 10 Hmi	ua of comp toms of P an	MINZ			
	which a	contains	6 X 10 20	toma or e an	d			
	15 × 1020	A Property and	314,7	of an	ч			

	2
•	5y ml = 20 ml (given).
	: x = 15 = 3 and.
•	: 5x ml = 15 ml (given)
	2
	5 ml - 5x me 5xy ml.
	1 mole — 2 mole y mole 2
	1mo 2
	1v — xv y v
*	1 Cx Hy + (x+4) 02 -> x CO2 + (y H2O (g)
	gives 15 ml of CO2 and 20 ml of H2O (g) Find the molecular journal $1 \text{ Cx Hy} + (x+y) \text{ O}_2 \longrightarrow x \text{ CO2} + (y+2) \text{ Cg}$
Q. 62	5 ml of gaseous hydrocarbon of combustion gives 15 ml of CO2 and 20 ml of H2019)
	$P = P_2 O_5$
	= 6 <u>2</u> 15 5
	NA 15 x 10 ²⁰
	: $simplest$ ratio = 6×10^{20} \times N_A
•	no of moles of $0 = 15 \times 10^{20}$
7	NA 20
	no. of moles of $P = 6 \times 10^{20}$ and

Q.63	0.2 l of Hydrogen on comphession
	1 l of CO2 and 1 l of H2O. Find molecula
	formula of H20. Find Molecula
	1 1 2 11 1 2
12,000	1 Cx Hy + 02 -> x CO2 + y H20
	2
	1V - 2V 4 V
-	0.21 - 0.221 0.24 1
	2
	11 11
•	0.2x l = 1l.
	: 2 = 1l = 5
	0.2 l
	: 0.2 y l = 11
	3
	: 4 = 21 = 10
	0.21
	:. M.F = C5 H10
	1. MI.F - C5 MIO
64	The Add and a second
-	And Mollitar formula of comp and
\rightarrow	Find Molecular formula of compared is compound is C2H4O and mass = 176
	C2 M40 and Mass = 176
-	" n = M.F. Mass
-	EF. Mass
	2 176
	2×12+4+16
	= 176 = 176
	32+ 24+4+16
	= 176 = 4
	4 4
	" MF = nx EF
m4aiims.ir	TI TIN EF

	.,		4× C2H4 C8H16 04				
Q. 65	Metals and oxygen combines to form two metal oxide. " of metals in 1st oxide is 60% and in the 2nd oxide is 40% If 1st compound is M203, then find formula of 2nd compound.						
	element	% compo-	Atomic	Relative	Simplest		
		sition	weight	noles	Ratio		
	М	60 %	χ	60 X	2		
	D	40%	16	40 = 5 16 2	3.		
	$\frac{5 \ln p'}{5 / 2} = \frac{2}{3}$ $\frac{60 / x}{5 / 2} = \frac{2}{3}$ $\frac{60 \times 2}{2} \times \frac{2}{5} \times \frac{2}{3}$						
	$x = 60 \times 2 \times 3 = 36$ 5×2						
	М	40%	36	40 <u>10</u> 36 9			
	0	60%.	16	60 = 15 16 4			
	: sin	aplest ra		1/9 = 8			
	: M.F	of 2nd	compound	= M8 027			

66	In a compound 14g x and 8g of y are present. Find EF if Atomic weight of x is 28 and y is 32
	are present. Find EF if Atomic weight
	of X 1s 28 and Y is 32
	$x \rightarrow 14/28$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	satio 28 8 1
	: M.F = X2 Y
57	It is found that 16.59 of Metals combin
	LOUIL OXYGEN TO JOHN 35.6 0 AS Metal
	oxide. Latituale the 1. composition of
	Metals and oxygen present in compound
-	Metals and oxygen present in compound. 1. of Metal = 16.5 x 100
-	35.6
	= 46.3 %
-	% of oxygen = 35.6-16.5 x 100
_	35.6
	= 19.1 × 100
_	35.6
	= 53.7 %
_	81-0-10
	StDICKIOMETKU.
-	Stoichiometry:
+	v
,	stoichi: element
,	stoichi: element retron: measurement
,	stoichi: element

	Stoichiometry co-efficient: The coefficient of reactants and products in any balance
	reactants and products in any balance
	chemical reaction is called storchiometry coefficient.
	eg: (2) Hz + (1) O2 \longrightarrow (2) Hz O here, 2, 1 and 3 represents stoichíometrica
	here, 2,1 and 3 represents stoichiometrica coefficient (s.c.)
	Balanced reaction:
	eg: $aA + bB \rightarrow cC + dD$
	eg: aA + bB -> cC + dD Stoichiometrical coefficient - a, b, c, d
æ	Stoichiometry always requires balanced
V	chemical reaction.
	It tells us about the jollowing:
	eg: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ S.C = 1 : 3 : 2
•	
•	Molecules 1 molecule: 3 molecule: 2 molecules.
	atoms 1 x NA atoms: 3 x NA atoms: 2 x NA atoms
•	Molar Ratio 1 mole: 3 mole: 2 mole
•	constant P and IV: 3V: 2V
	Vat S.T.P
•	V-V analysis 1x22.4 l: 3x22.41: 2x22-41
	The state of the s
	where,
	X 19: 39: 29 Not possible

	Mass can't be used directly according
	to storchiometric coexicient! It can be
	Mass can't be used directly according to storchiometric coefficient. It can be calculated always seconding to moles
	Some pasic Reactions:
1)	$Ca CO_3 \longrightarrow CaO + H_2O$
	(вн, мд, ка, ва)
ii	$2H_2 + O_2 \rightarrow 2H_2O$
iii)	$2KUO_3 \xrightarrow{\Delta} 2KU + 3O_2$
iv)	2 NaHCO3 - A > Na2CO3 + CO2 + H2O
v)	Li203 - D Li20 + CO2
ví)	$Na_2 co_3 \longrightarrow X$, No reaction
	(K, Rb, Cs) except Li
vii)	$H_2 CO_3 \longrightarrow H_2 O + CO_2$
νίü)	2 H2 O2
ix)	$NaNO3 \xrightarrow{\Delta} NaNO2 + 1.02$
λ)	$Zn + 2HU \longrightarrow ZnU_2 + H_2$
xi)	3 Bacl2 + 2 Na 3 PO4 -> Ba 3 (PO4)2 + 6 Na
xii)	NaHCO3 + HCL -> NaCL + CO2 + H2O

	How to solve problems related to stoi-
	chiometry:
	step I: Write down the balanced chemical reaction.
	Step II: write down the given amounts of reactants and products below their chemical formula
	step III: Apply unitary method for desired calculation
1	Type I: Reaction involving only 1 reactor eg: $A \rightarrow B+C$ (Balanced) 1: 1:1
	1: 1:1
	10 mole: 10 mole: 10 mole
	eg: $A \rightarrow 2B + 3C$ (Balanced) $t : 2 : 3$
	10 mole : 20 mole: 30 mole
	eg: $2A \rightarrow 3B + 4C(Balance)$ 2: 3:4
	10 mole: 15 mole: 20 mole
Q · 68	Find the mass of cao and co2 produced
	when $50 g$ of $CaCO_3$ decomposes. $CaCO_3 \longrightarrow CaO + CO_2$
	1 : 1 : 1
	Moles 50 = 1 : 1 : 1 100 2 2 2
	: 1 mole of CaO gives 1 x 56 g = 28 g

	and 1 mole of CO2 gives 1 44 = 22 q
	$ \begin{pmatrix} :: & n = w \\ M \\ :: & w = n \times M \end{pmatrix} $
Q. 69	Find the volume of co2 produced at S.T.P by decomposition by 1000 g of Caco3. Caco3 -> Cao + Co2 1 : 1 : 1 Moles] 1000 = 10 : 10 : 10
	volume of Co_2 produced = 10×22.4 ! $n = V$ 22.4 ! $V = n \times 22.4$!
0	Find the volume of N_2 and H_2 at S.T.P by decomposition of 50 l of NH_3 . $2 NH_3 \longrightarrow N_2 + 3H_2$ 2 : 1 : 3 volume $\boxed{ 2V : 1V : 3V }$ $50 l : 50 l = 25 l : 25 l \times 3 = 75$ 2
4	

Q.71	Find the moles of co2, produced by
	complete combustion of 5 moles of Butane
	also find mass of H20
	complete combustion of 5 moles of Butane also find Mass of H_{20} $CAH_{10} + (x+\frac{1}{4}) O_{2} \longrightarrow x CO_{2} + 4 H_{20}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Moles] 1 mole : 13 mole : 4 mole : 5 mole
	5 moles: 13x5 mole: 4x5 mole: 5x5 mole
	5 mole = 65 = 32.5 moles: 20 mole : 25 mol
	Hence, moles of CO2 produced = 32.5 moles moles of O2 produced = 20 moles
	: Mass of $H_{20} = 25 \times 18 = 4509 / : n = w$
	· · · · · · · · · · · · · · · · · · ·
Q.72	Find the moles of 02 required for complete
	combustion of 1 mole glucose.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Moles] 1 mole : 6 mole
	: 6 mole of 02 is required for complete combustion of 1 mole of glucose
Q. 73	Yind the mass of H20 produced by 10 g of
	H2 which reacts with 02
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	Moles I 2 mole: 2 mole (-10 Aim4aims.in

_	2 mole: 1 mole: 2 mole.
_	Moles] 10 = 5 mole: 5 mole: 5 mole.
	is mass of H_{20} produced = $5 \times 18 = 909$ $(: n = w : w = n \times m)$
	OR
	M-M analysis] 2 mole: 1 mole: 2 mole 49: 169: 369
	: 19 - 36 4
	$ \frac{109}{(: n = w)} = \frac{36 \times 10 = 909}{4} $
74	Find the volume of CO2 produced by combustion of 101 of ethene gas at constant Pressure and Temperature. C2H6 + 7O2 -> 2CO2 + 3H2O
	1:7:2:3
	v-v analysis] 1v — 2v 10l — 10x2 = 20l.
	Type II: Reactants involving more than 1 reactant but amount of only one
	reactant is given then other reactant are present in excess. (sufficient amount)
	I will in enclss.

2.75	Find the mass of NH3 produced when 569
	of N reacts with hydrogen.
	$N_2 + 3H_2 \rightarrow 2NH_3$
	1:3:2
	mole] 1 mole: 3 mole (excess): 2 mole
	56 = 2 role : - 2x2 = 4 role
	$28 = 4 \times 17 q$
	= 689
	$l : n = \omega : h = n \times M$
	$\left(\begin{array}{ccc} : & n = \omega & : & \omega = n \times M \end{array}\right)$
	OR
	M-M analysis] 2 mole - 4 mole
	1 mole — 2 mole
	289 — 349
	19 - 34
	28
	7. 569 - 34 x 56 = 68
	28 0
	ΨE
Q.76	calculate the following:
<i>i</i>)	Mass of CO2
(i)	volm of co2 at STP
îii	Mass of Mgo produced by decomposition of
- ""	8.4 9 of MgCO3.
	$Mg co_3 \longrightarrow Mg o + co_2$
	1 : 1
	M-M analysis] 849 : 409 : 449
	The statement of the st
	9 40 9 47 9
-11	8.4 9: 40 x 8.4 = 49: 44 x 8.4 4.4
	84 084
	Q 4 0 4 1 4 4 Q Aim4aiims.in

_i)	Mass of co2 produced = 4.49
ii)	Mass of cor produced = 4.49
	": n = given mass = 4.49 10
	Molas Mass 44g 10
	$: n = V$ $: V = n \times 22.42$
	22.41
	: V = 1 x 22.41
	= 2.24 l
lii	Mass of MgO produced = 4 g
77	81 mixture of CH4 and C3H8 on complete
	combustion gives 14 l of CO2 Find the
	volume of CH4 and C3H4 present in
	the nixture.
	let the mixture of CH4 be a l
	: the mixture of C3H8 = (8-x) l.
	$CH4 + 2O_2 \longrightarrow CO_2 + 2H_2O$
	V-V analysis 1 L 1L
	xl — xl
	$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$
	<u> </u>
	(8-x)e = 3x3(8-x)
-	acc to que,
	x + 3(8 - x) = 14
	x + 24 - 3x = 14
	24 - 14 = 3x - x
	$2\chi = 10$
-	2 = 5
-	: volume of $CH_4 = \chi l = 5l$: volume of $C3H_8 = (8-\chi)l = 8-5l = 3l$
-	
vim4aiim	es.in

	
-	let the mixture of CH4 be x1 and
-	the mixture of C3H8 be ye.
	$CH4 + 202 \longrightarrow CO_2 + 2H_2O$
-	v-v analysis] 12 12
	21
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
***	V-Vanalysis] 11 — 31
-	yl — 3yl
	acc to que,
-	x + y = 8
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-	(-) (-)
	-2y = -6
	-2y = -6 $y = 3$ $x = 8 - y = 8 - 3 = 5$
	x = 8 - y = 8 - 3 = 5
	O.K
	Short trick:
	CDH4 and C3H8
_	2l $3(8-x)$ l
	:- 2+3(8-x) = 14 l (given)
-	2+24-3x=14
-	$\therefore -2x = -10$
-	$\therefore x = 5l \text{ and } (8-x)$
	= 8-5 = 3l
Q.78	CO2 on complete combission. Find the volume
	CO2 on complete combission. Find the volume
	Using short trick:
	CDH6 and CBH8
	$2x l \qquad 3(10-x) l$
	2x + 3(10-x) = 221 (given)
160	2x + 30 - 3x = 22 Aim4aiims.in

	-x = 22 - 30
	x = 8 l and $(10-x)$
	= (10-8) = 21
79	calculate the volume of air required for
	complete combustion of 101 of CH4
	$CH4 + 202 \longrightarrow CO2 + 2H2O$
	1:2:1:2
	V-V and vis 7 settle: 21 : 11 : 21
	v-v analysis] settl: 21 : 11 : 21
	101:201:101:201
	: fir contains 02 by 20% by volume. : Vair x 20 = V(02)
	: Vair x 20 = V(02)
	100
	:. Vair x 1 = V(02)
	5
	: Vai = 5 x V(02)
	: Vair = 5 x 201 = 1001
	201 201 7002
000	solvente the volume of at marine
4/60	Salculate the volume of air required
	for complete combustion of 50 of propane
	$C3H8 + 502 \longrightarrow 3CO_2 + H_2O$
	1:5:3:1
-	V-V analysis 1 1 : 51 : 31 : 11
	5l : 5x5l : 5x3l : 5l
	= 25l = 15l
	: Vair = 5 x vol (02)
	$= 5 \times 25 l = 125 l$
村	Volume (air) = 5 × volume (02)
1	volume (as) = 3 × volume (02)

2.	Type II: Reaction involved in more than
	I reactants and amount of all
	other reactants are given.
*	special case of type 2, (limiting reagent
	Limiting reagent: The reaction which is
	completely consumed (finished earlier) in
	completely consumed (finished earlier) in chemical reaction is called limiting
	reagent. It always limit the amount of product form,
	Method to find LR.
	Mole ratio: Moles of Reactant.
	stoichlometric coefficient
	stoichlometric coefficient The reactant which have minimum least
	mole satio is limiting reagent
	eg: LR N2 + 3H2 -> 2NH3
	1:3
	51 : 201 (given)
	then, 51 will reacts with 151.
	Remaining volume = 201-151 = 51
	$L.R = N_2$
	eg: L.R. 2H2 + 02 -> 2H20
	10 mole: 7 mole: 10 mole (given).
	L.R 10 : 7
	2
-	5 4 7
	: H2 is L.R.
	Aim4aiims

81	Find L.R.?
	N2 + 1.P. 3H2 NH2
	10 mole 15 mole
	: LR = 10 : 15
	1 3
_	10 > 5
	: LR is H2
0	Reactants which do not consume computery
	is reaction is called excess reagent.
82	$2A + 3B \longrightarrow C + D$
	20 mole 30 mole
	Find L.R.
	: LR = 20 : 30
	2 3
-	10 = 10
	: Both A and B are limiting reagent.
3,	2A + B + 3C -> 4D + E
-	Find LR. and final composition of
	reaction mixture
	2A + B + 3C/18-> 4D + E
	5 note 6 note 6 mole
	$3 \cdot 1 \cdot 1 = \frac{5}{2} \cdot \frac{6}{1} \cdot \frac{6}{2}$
	2.5 < 6 > 2
,	: 3c is the limiting reagent.
	for final composition,
	4D ⇒ : 3 mole 4 mole
	1mole—4 mole

	: 6 mole 4 x x 6 nuol
	= 4x 2 = 8 mol
	$E \Rightarrow :: 3 \text{ mole} = 1 \text{ mole}$
	1. 1 mole = 1 mole 3
	: 6 mole = 1 x 6 = 2 mole.
Q. 84	Salculate the moles of H2 obtained wh
	HCL.
	zn + 2HCe]LR→ ZnCe2 + H2
	1 mole: 2 mole: 1 mole: 1 mole
	0.3 mole : 0.5 mole :
	:L.R = 0.3 = 0.3 : 0.5 - 0.25
	0.3 > 0.25
	: LR = HU
	: 2 mole - Imole
	: I mole - I mole
	2
	0.5 mole - 1 x 0.5
	= 0.25 mole
Q. 85.	Find the moles of c produced in the
	Heaction $1.R \mid 3A \mid + \mid 5B \mid \longrightarrow \mid 4C$
	LA 13A 7 3B 7 4C

	": 3 mole - 4 moles
	1 mole — 4 moles
	: 15 moles $-\frac{4}{3} = 20$ moles
86	Calculate volume of NH3 at STP. when 100 ml of N2 is mixed with 500 ml of H2 1.1. N2(g) + 3H2(g) -> 2NH3(g)
	v-v analysis] 1v : 3v : 2v 100 ml : 500 ml
	Moles] 100 : 500 22400 22400
	1 224 224
	: LR = N2
	: 1V - 2V
	: 100 ml - 200 ml.
87	Find the mass of HU produced when log of H2 combines with 142 g of Cl. PAY: $H_2 + Cl_2 L R \rightarrow 2HCl$
	10gm 142gm
	moles] 10 : 142 2 71
	5 mole: 2 mole
	$\frac{1}{1}LR = \frac{5}{1} > \frac{2}{1}$
	12 mole - 2 mole
	Property and the second
	2 mole — 4 mole

0.88	Find the mass of H20 produced when 2g
	of H2 reacts with 20 of 02
	of H2 reacts with $8g$ of 02 $2H_2 + 02 = 2H_20$
	2 : 1 : 2
1011	204 204
	Mole 7 2 . 8
	Mole 7 2 : 8 2 32
	1 mole: 1 mole
	L.R = 1 \ 1
	$\frac{L \cdot L}{2} \rightarrow \frac{1}{4}$
	: 1 mole — 2 mole
	$\therefore 1 \text{mole} 1 2 = 1 \text{mole}$
	Mass of 1 mole of $H_2O = n \times 18$
	$= \frac{1}{2} \times \frac{18}{2} = 9g$
0 000	OR.
1 29	m-manalysis]: 32 g - 36 g
	19 - 36 9
	32 /
	: 89 - 36 x8 = 99
	32
7.89	Find the final composition of reaction Mixture when 30 l of N2 reacts with 30 l
	Mixture when 30 l of N2 reacts with 30 l
	of H2
	$N_2 + (3H_2)_{LR} \rightarrow 2NH_3$
	1:3:2
	301: 301
	JV A

9.	3 mole —	2 mol
	3½L -	2.4L
	14L -	2 ML
	30 L —	2 x 30
		= 20L
: Fox remaining	volume: In	inial volume
 J	· reac	tant volume
30 L	30 L	
- 10 L	30 L	
20 6		
 Hence, 20 L of	No is left u	relactant.
moles 64	32 9	
 16.4	32	
	ole: 1 mole	
, , ,		
i.LR = 1 - 2	1	
2	1	- 9 nuali
2 2 mole		- 2 mole
2 2 mole 1 mole 1 mo	le	- 1 mole
2 2 mole 1 mol	le	
2 2 mole 1 mole 1 mo	te ———	- 1 mole
2 mole 1 mole 1 mole 2	le	- 1 mole -1 mole -2

Q.91	calculate the volume of NH3 phoduced at ST
	when 3×10^{23} molecules of N2 combined with
	6 g of H2
	$1.11 N_2 + 3H_2 \longrightarrow 2NH_3$
	1:3:2
	molis 3x10 ²³ : 6
	6×10 ²³ 2
	1 mole: 3 mole
	2
	$1 \cdot 1 \cdot 1 \cdot 1 = 1 \cdot 1 \cdot 1 = 1$
	1 mole 2 niole
-	1 mole — 1 x 2 mole
	= 1 nuole
	a volume of of 1 mole of NH3 = nx22.42
	= 1x22.4 l
	· = 22.4 l
0.92	9 moles of Bacis reacts with 8 moles of
	Na3 PO + L.R 3Bacl2 + 2Na3 PO + -> Ba3 (PO +) 2 + 6Nacl
	3: 2: 1: 6
	9 moles : 8 moles
	L.R = 9 - 3 : 8 - 4
	3 2
	3 4 4
	3 moles — 1 moles
	1 mole — 1 mole
	9

	$\therefore 9 \text{ mole} \qquad \frac{1}{3} \times 9 = 3 \text{ mole}$
93	40 ml of SO2 reacts with O2 after reaction 80 ml of O2 remained unreactant then calculate original volume of O2 2502 + O2 -> 2503 2: 1: 2 2v: 1v: 2v (40 ml): 20 ml : (2 mole = 40 ml) : I mole = 20 ml : Initial volume = remaining volume +
94	### Heactable volume = 80 ml + 20 ml = 100 ml Thind the mass of iron which gives Fe304 on reaction with 18 g of steam 3Fe + 4 H20 -> Fe304 · 4 H2
	$3Fe + 4Fl_2O \longrightarrow Fe_3O_4 \cdot 4H_2$ $3 : 4 : 1$ $18g$ $Moles J given mass = 18$ $Mislar mass = 18$
	1 mole 3 mole — 1 mole 4
1	Mass of 3 mole of Fe = $n \times 56$ = $\frac{3}{4} \times 56$

	Concentration Terms (Application of Mole concept in solutions)
	It represent the amount of solute present in given amount of solvent or solution
	solution: It is a homogenous mixture of two on more non-reacting substances.
失	Classification of on the basis of Physical state:
i)	solid solution: Alloys
ii)	Solid Solution: Alloys Liquid Solution: Aqueous solution (eg: H2804, Nace etc)
iii)	yaseous solution: Air
	solution: solute + solvent
*	classification on the basis of number of solute:
i)	2 compound: 1 solute + 1 solvent (Binary solution)
ii)	3 compound: 2 solute + 1 solvent (Terhary solution)
,	yenerally, the component which is present in comparatively small amount is called soll and components which are present in larger amount is called solvent.

	eg: 10 g Nace (s) + 50 g H2O (e) (Solute) (solvent)
	(solvent)
	eg: 20 ml of alcoholie)+ 50 ml of H20 (e) (Solute) (Solvent)
	(Solute) (Solvent)
	eg: 60 g sugar (s) + 50 g H20 (e) (solute) (solvent)
	(Solute) (Solvent)
0	If solutions have more than one physica
	state of their components, than, physical state of solvent and solution remain
	same
1.	Percentage ?
í)	Percentage by mass (by weight) (% mass): It represents mass of solute in gram
	present in 100 g of solution.
	:: 1/2 W = Mass of solute x 100 Mass of solution
	Wsolution = Wsolute + Wsolvent
	eg: 15 g of wrea present in 100 g of solution: Mass of sowent (420) = (100 - 15) g
	= 85 g
	eg: x g of solute present in 100 g of solution : mass of solvent (H2O) = (100-x) g

95	Find 1. by mass of solution when 50 g
	solute in present in 250 g.
	% by mass = Mass of solvete × 100
	mass of solution
	= 50 × 100 = 20%
	250
96	Find 1. by weight when 5g HCl dissolves in 50g H20
	1. by mass = Mass of solute x 100
	" Mass of solution
	= _5 × 100
	50+5
	= 5 × 100 = 9.1%.
	55
ii)	Percentage by volume:
	1/2 W - It gives mass of solute present in
	: 1/ W = Mass of solute (g) x 100
	volume of solution (me)
77	Find 1. by volume when 20g of Nace is
	present is 500 me of solution
	: 1/ w = Mass of solute (g) ×100
	V volume of solution (me)
	= 20 × 100
	500 × 700
	= 4 %

	% v = It gives volume of soute (me)
	present in 100 ml of solution (me)
	: /. \ = volume of solute (me)
	volume of solution (me)
98	Find 1/2 by volume when Downight has
	Find % by volume when 50 weight by volume when 50 me of C2 H5OH present
	in 400 me of H20
	1/ 1/ walm as 12/11/5 (1911)
	V solute (me) x 100
	1/2 V = volm of solute (me) x 100 V volm of solution (ml)
_	= 30 × 100
_	400 +50
	$= 50 \times 100 = 100 = 11.1 \%$
	450 9
	It is the ratio of no of males of one component to total no of males of all the components present in solution
	eg: Let A = solute and B = solvent : moles of A = nA and B = nB :. XA = NA
	$n_A + n_B$
	XB = nB
1	$n_A + n_B$
	Later to the result of the second of the sec
*	some of all the more praction of all
*	the components present in southing is and
*	Some of all the mole fraction of all the components present in solution is equal to one . : X solute + X solvent = 1

Q-99	If two moles of solute is present in 3 moles of solvent, then find the
	3 moles of solvent, then find the
	mole fraction.
	X solute = 2 = 2 and
	2+3 5
	\times solvent = $\frac{3}{2}$ = $\frac{3}{5}$
	2+3. 5
P-100	In a closed container, 10 g of H2, 56 g of
100	No and 4g of the is present, then find
	note praction of each component.
	X He = 10
	10 +5.
	Moles of $H_2 = 10 = 5$ moles,
	Muses of 112 - 10 = 5 moses,
	moles of N2 = 56 = 2 moles
	28
	moles of He = 4 = 1 moles
	$\therefore XH_2 = 5 = 5$
	5+2+1 8
	$X_{N_2} = 2 = 2 = 1$ $5 + 2 + 0.1 = 8 = 4$
	5+2+81 8 4
	XHE = 1 = 1
	5+2+1 8
	For verification: sum of mole fraction = 1
	5 + 1 + 1 - 5 + 2 + 1
44 4	8 4 8 8
	= 8 = 1, Hence, verified.
	8

	Mole percent = Mole fraction x 100
	: Mole % = Moles of component x 100 Total moles
101	100 g of aqueous solution of C2H5OH contains 46g of C2H5OH. Calculate mole 1. of both solute and solvent.
	: 46 g of C2H5OH is present in 100 g of aqueous solution.
	Moles of solute = 46 = 46 = 1 mole
	: mount : 100 - 46 = 549
	Moles of solute = 46 = 46 = 1 mole 24+5+16+1 46 amount : Moles of solvent = $100 - 46 = 54g$: Moles of solvent $(H_{20}) = 56 = 3$ mole 18
	Mole %. of C2H5OH = 1 ×100
	= 1 × 100 = 25%.
	Mole $\frac{1}{1}$ of $\frac{1}{1+3}$ $\frac{3}{1+3}$ $\frac{100}{1}$
	= 3 × 100 = 75%
3.	Molarity / Molar concentration (M):
	It is defined as no of moles of solute present in 1 & solution.
	Unit: Mole/litre
	= <u>MOL</u>

	M = no of moles of solute
	M = no of moles of solute volume of solution (L)
	eg: 0.5 Mole aqueous solution of HNO3 :. 0.5 mole HNO3 present in 1 L solution
	:. 0.5 mole HNO3 present in 1 L solution
	1.2 Mole solution
Q. 102	It 20 g NaOH is present in 21 of solution then find molarity M = no of moles of solute volume of solution (1)
	We no of Moles of solute
- 5	= 20g 1 x 1 = 1
	$ = \frac{20g}{40g} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} $
	21
	= 0.25 M/L
4.103	4.9 gm of H2 SO4 is dissolve in water
	and volume of solution is melt upto
	500 ml, find molarity
	M = no. of moles of solute
	volume of solution (1) $= 4.9 g = 49 \times 10^{3}$
	98 9 980 500
	500 × 10 ⁻³ L
	$=\frac{1}{20} \times \frac{2}{10} = \frac{1}{10} \text{ M/L}$
0.104	5.6 gm of KOH is present in 200 ml of solution. Find molarity

	M = no of moles of solute
	M = no of moles of solute. volume of solution (L)
	$= \frac{5.6 g}{56 g} = \frac{56}{560} \times \frac{10^3}{200}$
	56 g = 560 200 200 × 10 ⁻³ L
	2 - 3 .
	$= \frac{1}{10} \times \frac{5}{2} = \frac{1}{2} = 0.5 \text{ M/L}$
	10 2
	No. of moles of solute = MXV(L)
_*	Na of millimoles = (Marino)
Q-105	Tind the no. of moles of solute present in 100 me of 0.1 Molar HCl solution.
	: M = no of moles of solute. volume of solution (L)
	volume of solution (L)
	: no of moles = M x V(L)
-	= 0.1 X 100 1000
	$= \frac{1}{10} \times \frac{1000}{1000} = \frac{1}{100} = 0.01 \text{ M/L}$
Q · 106	How many moles and gram of Nace
	How many moles and gram of Nace are present in 250 ml of 0.5 Molar of
	Nace solution
	no of moles = MX V(L)
	= 0.5 x 250
	1000
	$\frac{2}{10} \times \frac{1}{4} = \frac{1}{8}$

	$n = w : W = n \times M.$
	M
	= 0.125 x 58.5
	= 7.39
7.107	How many grams of NAOH should be dissolved to make 100 ml of 0.15 Molar
	dissolved to make 100 me of 0.15 Molar
	NIADH ADULTION
	no of moles = MX V(L)
	$= 0.15 \times 100$
	1000
	2 15 x 1 - 3 moles 100 × 10 200
	100 10 200
	: n= w : w = nx m
	M (22.1.1.1.)
	200 × (23+16+1)
	200
	= 3 × 40 = 0.6 g
	200
	1 Luciant in 1000 CC
6.108	4 g of coustic soda present in 100 cc
	solution Find Molarity
	raustic soda: NaOH
	no of moles = MXV(L)
	» M = no. of moles volume (L)
	= 49
	40 g 100 X10 ⁻³ L
	= 1.000 = 1 10 × 100

178

10.109	40% W/V NaOH solution.
4	: 40 g NaOH is present in 100 ml.
	": 40 g NaOH is present in 100 ml. ": M = no of moles of solute
	volume of solution (2)
	= 40 q 1 X 10
	40 g = 100 100 × 10 ⁻³ L
	= 1000 = 10
	100
Q-110	Find molarity when 5.60 5.6% w/v ko
	Jolution.
	: 5.6 g of \$6.KOH is present in 100 ml
	M = no of moles of solute
	. 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	= 5.69 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$= \frac{5.69}{569} = \frac{56}{560} \times \frac{10^3}{100}$
	100 × 10 ⁻³
	$\frac{2}{10} \times 10 = \frac{1}{10}$
	70
4.	Molality / Molal concentration (m)
	et is defined as no of moles of solution present in 1 kg (1000 g) solvent
	present in 1 kg (1000 g) souther
	unit: Moles
	kg
	m = no. of moles of solute mass of solvent (kg)
	St. 1572 (40)

株	m = wsolute x 1
	Mw Wsolvent
	eg: 0.2 m aqueous solution C6H6
	: 0.2 mole of solute present in 1 kg of
	solvent.
2-111	5.8 g of Nace is present in 500 g of Hoc
	Hind molality
	" m = no. of moles of solute.
	mass of solvent (kg)
	= 5.85g
	58.5 g 500 x 10 ⁻³ kg
	500 x 10 kg
	$\frac{10^3}{10\times500} = \frac{1}{5} = 0.2 \text{ Moles/kg}$
	70 X 500 5
Q.112	98 g of H2SO4 is present in 198 g of
	its agueous solution calculate molality
	m = no of moles of solute
	mass of solvent (kg)
	$= 989 1 \times 10^3$
	989 100
	100 #8 × 10-3
	(: Mass of solution = 198 g. : Mass of solvent = 198 g - 98 g = 100 g)
	t: Mass of solvent = 1989 - 989 = 100 g)
	= 1000 = 10 Moles / Kg
	100
	250 g caco3 is present in 1000 g of its aqueous solution. Calculate replacity

	m = na of moles of solute				
	mass of the Solvent (tg)				
	mass of solvent = \$ mass of				
	solution - mass of solute				
	: Mass of solvent = 1000g - 250 g = 750 g				
	m = no of mous of social (tg) mass of the solvent (tg) mass of solvent = \$\vec{m}\) mass of solution - mass of solute mass of solvent = 1000g - 250g = 750g = 250g				
	100 9 750				
	$750 \times 10^{-3} \text{kg}$				
	= 25 × 1000 = 10 = 3.33 proles/k				
	7500				
2.114	10 g NaOH is dissolved in 500 g of water.				
X.1.1.	Find molality				
	m = no. of moles of solute mass volume of solvent (kg)				
					= 109
					500 × 10 ⁻³ Kg
	2 1 - 0.5 moles/kg				
	7 2				
Q.115	Hind molality of 40% W/W NAOH solution : 40 g of NAOH is present in 100 g solution. Mass of solvent = Mass of solution-				
	: 40 g of Nath is present in 100 g sociation				
	Mass of solvent = Mass of solvent				
	Mass of Lottle				
	= 100g - 40g = 60g				
	: m = no of son moles of solute				
	mass of the solvent (kg)				
	= 40 9.				
	40g = 1000 = 16.67 mole				
	$60 \times 10^{-3} \text{ kg}$ 60 kg				
m4aiims.in					

5.	Parts per million (PPM):		
	It represents parts of solute present in 1 million (106) by part solution.		
	Mass of solute in gram present in 3 million (106) gram solution.		
	PPM = Mass of solute (g) x (06 Mass of solution (g) / (solvent)		
	: Mass of solution ~ Mass of solvent.		
	It is generally used for the concentration of very dilute solution like our pollution hardness of water.		
	eg: 10 g of CaCO3 present in 5000 g of 420 = 10 × 106		
	$= 2 \times 10^3 = 2000 ppm$		
·116	Find the concentration in ppm by 40%. w/w solution. : 40 g of solute present in 100 g solution - 40 g x 10 6		
	100 g ^ = 4x 10 ⁵		
¥	PPM = 1/2 W x 104		

182

0.117	of solution 1.2 g/ml. Find:
	and volume of 1011Him is 500 ml
	of solution 1.2 0/mil Till and density
	To w/v g/mc. And:
0	% w/w
	": density = mass
	VOIM
	M= &V
	$= 1.2 \times 500 = 600 g$
	: 1/2 w/v = mass of solute (9) x 100
	volume of solution (me)
	= 60 × 100
16	$\frac{12\%}{2}$
	stittle (9) x 100
	mass of solution(g)
	= 60 × 100 = 10%
	000
	100001
×	Temporation
	Temperature dependent:
	% by volume Molarity (M)
	Normality (N)
	It is due to change in volume because
	of temperature.
*	Jempey a true
	lemperature Independent:
	tole praction (x)
1000 F 10 10 10 10 10 10 10 10 10 10 10 10 10	lolality (m).
0 0	FIVE

	Law of Dilution:		
	# Dilution means addition of solvent (#12" usually H20 (water)		
0	In the dilution no of moles of solute		
	In the dilution, no of moles of solution remain unchanged because only solvent is added.		
	$M_1V_1 \longrightarrow + V_{12}O \longrightarrow M_2V_2$		
•	Before dilution, n solute = M,V,		
e	after dilution,		
	n solute = M_2V_2		
	where $V_2 = V + V_1$ Molarity equation: $M_1V_1 = M_2V_2$ $M_2 = M_1V_1$ V_2		
	Mylnal = no. of moles of solute Total volume of solution		
	eg: 5 mole of H2SO4 in 2 L + 8L of H2O		
	$M_2 = M_1 V_1$		

118	200 ml of solution of HCl of I molarity is		
	diluted and final molarity becomes 0.5.		
	moles, then find volume of H20 added.		
	$V_2 = M_1 V_1$		
	M ₂		
	= 1 × 200 = 400 ml.		
	0.5		
	: volume of H20 = V2-V,		
	= 400 ml - 200 ml = 200 ml		
119	if in 200 ml of 1 molarity (M) Her in		
	if in 200 ml of 1 molarity (M) Her in		
	800 ml of H20		
	$M_2 = M_1 V_1$		
	V ₂		
	$= 1 \times 200 = 1$		
	800 4		
120	salculate the modarily of 2M solution is		
	it is diluated to 100 times.		
	$M_2 = M_1 V_1$		
	V2_		
	= 2 X V = 0.02		
	100 V		
*	Molarity & X 1		
`	Volume		
	It means when volume increases theregove		
	molarity decreases.		

10.121	Calculate the volume of water required to					
	make centimolar solution from 100 me of					
	semimolar solution					
	" V2 = M(V)					
	M_2 = $M_{\times}100$ = 5000 ml.					
						M
		: volume of H20 = V2-V1				
	= (5000 - 100) me					
	= 4900 ml					
	7 100					
	Molarity for mixture of solutions: Sase I: Mixing of same type of solution (Non-reacting).					
	(Non-reacting).					
	(Non-reacting).					
	(Non-reacting).					
	M ₁ V ₁ M ₂ V ₂ M ₃ V ₃					
	$M_1V_1 \qquad M_2V_2 \qquad M_3V_3$ $M_1V_1 + M_2V_2 = M_3V_3$					

			10.07	1	
	2M, 5L	1 M, 10L	M3 V3	•	
	* Ma =	MIVI + MIVI			
	$M_3 = M_1 V_1 + M_2 V_2$ $V_1 + V_2$				
	2	2x5 + 1×10			
		5+10			
	=	10+10 4			
_		15 3			
20	400-1-01	A 040 AV 1899 AV 1999	0		
22	800 ml of 0.1 M of NAOH is mixed with				
	800 ml by 0.5 M of NAOH, Find My				
	1 : M, =	0			
	". My ="	$M_1V_1 + M_2V_2$		0	
	:. 19 ₁ =	$V_1 + V_2$			
	:. 19 ₁ =	V1+V2 200x 200 x 0.1 -	- 800 X 0.5		
	: My = = = = = = = = = = = = = = = = = =	V1+V2 200x 200 x 0.1 -	- 800 X 0.5 +800		
	: My = = = = = = = = = = = = = = = = = =	V ₁ + V ₂ 200x <u>200 x 0 · 1 </u>	- 800 X 0.5 +800		
	= =	V ₁ +V ₂ 200x <u>200 x 0·1</u> - 200 20 + 400 - 1000	- 800 X 0.5 +800 420 = 1		
	Molarity of	$V_1 + V_2$ $200 \times 0.1 = 200$ $20 + 400 = 1000$ $200 : 000 : 000$	- 800 X 0.5 +800 420 = 1		
	Molarity of	$V_1 + V_2$ $\frac{200 \times 200 \times 0.1}{200}$ $\frac{200}{1000}$	- 800 X 0.5 + 800 420 = 0 1000	D.42 M.	
	Molarity of	$V_1 + V_2$ $200 \times 0.1 = 200$ $20 + 400 = 1000$ $200 : 000 : 000$	- 800 X 0.5 + 800 420 = 0 1000	D.42 M.	
	Molarity of (solid alio (strong acid	$V_1 + V_2$ $\frac{200 \times 200 \times 0.1}{200}$ $\frac{200}{1000}$	- 800 x 0.5 + 800 420 = 1 1000	D.42 M.	
	Molarity of (solid alio (strong acid	V1+V2 200x 200 x 0·1 - 200 20 + 400 1000 ions: d. strong b	- 800 x 0.5 + 800 420 = 1 1000	5.42 M Salts)	
	Molarity of (solia alia (strong acide) eg: 0.5 M H	V1+V2 200x 200 x 0·1 - 200 20 + 400 1000 ions: d. strong b	$-\frac{800 \times 0.5}{1800}$ $+\frac{20}{1000} = 0$ ase and $-\frac{1}{1}$	5.42 M Salts)	

Q.123	Find the molarity of cons of Ba(OH)2 of 0.2 N \therefore Ba(OH)2 \longrightarrow Ba ²⁺ + 2OH				
	1 100 1 1 1 2				
	(0.2 or 2.4 0.2 M = 0.2 x 2				
	= 0.4 M				
0.124	Find the molarity of cons of Al2(504)3 of 1.5 M : Al2(504)3 \rightarrow 2AL+3 + \$73504^2				
	: 2:3				
	= 2×1.5 : = 3×1.5				
	= 3 M and 4.5 M				
	Case II: Mixing of reacting solution				
	ea: HCl + NaOH -> Nacl.				
	eg: $HCl + NaOH \rightarrow Nacl$ $\begin{pmatrix} 1M. \\ 50 me \end{pmatrix} \begin{pmatrix} 1M \\ 50 me \end{pmatrix} = 100 ml$				
	(50 me) (50 nue)				
	Molarity = 1 M				
	Millimoles: 1×50 + 1×50 = 50 mnoles = 50 mmoles = 50 mnoles				
	where inmoles = millimoles				
	eg: M, (molarity of Nace) = moles of solute Total volume of solution				
	= 50 mMoles = 1 M 100 ml 2				
	OR				
	0.05 moles = 1 M.				
	0.1				
	? (Molarity) jinal ie. My = Moles of solute				
38	Total volume Aim4aiims.in				