High Yielding Test Series

Part Test 6 - Half XIth

Get Free Counselling

MBBS | BDS | BAMS | BHMS | BUMS

NURSING | PARAMEDICAL | PHARMACY

Register at www.shikshaview.com

ADMISSION HELPLINE

+91-8126030103

1.

Which of the following is/are essential for imbibitions to take place?

I. Water potential gradient between the absorbent and the liquid imbibed

II. Affinity between the adsorbant and the liquid

1. Only II

2. Only I

- 3. Both I and II
- 4. None
- 2.

Consider the following statements and select the option that correctly fill in the blanks.

A. _____ is used to induce the dormancy of buds 6. and storage organs.

B. _____ speed up the malting process in brewing industry.

C. Senescence is prevented by _

А	В	С
1. Gibberellin	Cytokinin	GAs
2. Ethylene	ABA	Cytokinin
3. Cytokinin	Auxins	ABA
4. ABA	GAs	Cytokinin

3.

Select the correct match w.r.t. mineral as activator/components of enzymes.

a.	Nitrogenase	(i) Zn
b.	PEPcase	(ii) Fe
c.	Alcohol dehydrogenase	(iii) Mo
d.	Catalase	(iv) Mg

- 1. a (iii), b (iv), c (i), d (ii)
- 2. a (iii), b (iv), c (ii), d (i)
- 3. a (iv), b (iii), c (i), d (ii)
- 4. a (iii), b (ii), c (i), d (iv)
- 4.

Low intelligence quotient abnormal skin and deafmutism

is related to

- 1. Low secretion of growth hormone.
- 2. Hypothyroidism.
- 3. Hyperparathyroidism.
- 4. Hyposecretion of adrenal cortex hormone.

5.

During the process of respiration redox equivalents are removed

- 1. In form hydrogen atom.
- 2. In form of electron.
- 3. In form of H_2O .
- 4. In form of ATP.

Which of the following is not modified mucosal epithelium?

- 1. Goblet cells
- 2. Brunner's glands
- 3. Crypts of Lieberkuhn
- 4. Gastric glands

The resting axonal membrane of a neuron:

- 1. is not polarized
- 2. has excess of anions on the outside

3. is more permeable to potassium ions than to sodium ions

4. cannot be excited by a stimulus

8.

7.

The essential element which maintains the ribosome structure is

- 1. Responsible for carbohydrate translocation.
- 2. Needed during mitotic spindle formation.
- 3. Constituent of ring structure of chlorophyll.
- 4. Needed in the synthesis of auxin.
- 9.

Consider the characters of a respiratory control center in humans:

I. It is located in pons

II. It moderates the functions of respiratory rhythm center III. Its absence results in an increase in depth of respiration

The respiratory control center is:

- 1. Pneumotaxic center
- 2. Apneustic center
- 3. Chemosensitive zone
- 4. Dorsal group

10.

Consider the characters of a particular type of joint: I. It is a type of synovial joint

II. It enables the bone to move in a 360° angle.

III. It is exemplified by joint between humerus and pectoral girdle

What is this type of joint called?

- 1. Hinge
- 2. Ball and socket
- 3. Pivot
- 4. Saddle
- 11.

In the given graph what does A, B represent?

1. A - Absorption spectrum; B - Action spectrum (Chl. a).

2. A - Action spectrum; B - Absorption spectrum (carotenoids).

- 3. A Absorption spectrum; B Action spectrum (Ch. b).
- 4. A Action spectrum; B Absorption spectrum (Ch.a).

12.

An acromian process is characteristically found in the -

- 1. Skull of frog
- 2. Sperm of mammals
- 3. Pelvic girdle of mammals

4. Pectoral girdle of mammals

13.

According to mass flow hypothesis

(a) Sucrose is moved into the companion cells and then into the sieve tube by passive transport. (b) Inside the phloem, an osmotic pressure gradient is generated that facilitates the mass movement in the phloem.

(c) Water in the adjacent xylem moves into the phloem by active process.

- 1. (a) and (c) are correct.
- 2. (b) and (c) are incorrect.
- 3. (a) and (c) are incorrect.
- 4. (a) and (b) are correct.

14.

Enzymes and electron carriers for the formation of cellular energy are present in the mitochondria at

- 1. Outer membrane only.
- 2. Inner membrane only.
- 3. Both outer and inner membrane.
- 4. Mitochondrial matrix only.
- 15.

The "sodium-potassium pump" pumps _

- 1. sodium ions out and potassium ions in
- 2. sodium ions in and potassium ions out
- 3. sodium and potassium ions in
- 4. sodium and potassium ions out
- 16.

Mark the correct statement

1. Electrical synapses are more common in our neural system than chemical synapses

2. The new potential in post synaptic neuron may be either excitatory or inhibitory

3. Hypothalamus is the major coordination centre for sensory and motor signaling

4. The tracts of nerve fibres that connect two cerebral hemispheres are called corpora quadrigemina.

17.

Pyruvic acid + CoA + NaD⁺ \rightarrow B + CO₂ + NADH⁺ + H⁺ in the above given reaction of respiration what can be placed at the place of A and B respectively?

- 1. Iron and Citric acid.
- 2. Magnesium and Citric acid.
- 3. Dehydrogenase and Acetyl CoA.
- 4. Iron and Acetyl CoA
- 18.

High Yielding Test Series - Part Test 6 - Half XIth

Contact Number: +91-8126030103

A. _____ hormone is most widely used PGR in agriculture.

B. _____ hormone is related with Richmond Lang effect.

A B 1. Auxin CK 2. Auxin GA

3. Ethylene CK

4. ABA CK

19.

Congestive heart failure is often linked to

1. Congestion of lungs which commonly occur in asthmatics and smokers.

2. Damage of heart muscles by an inadequate blood supply.

3. Deposition of calcium, fat, cholesterol and fibrous tissues in the coronary arteries.

4. Blockage of AVN.

20.

The choroid layer is thin over the posterior two-thirds of the eye ball, but it becomes thick in the anterior part to form the

1. Iris

- 2. Ciliary body
- 3. Pupil
- 4. Suspensory ligament

21.

Which one is correct regarding electrocardiograph?

1. P-wave represents the electrical excitation of the ventricle

2. QRS complex represent repolarization of the ventricles

3. T-wave represents repolarization of the atria

4. By counting the number of QRS complexes one can determine the pulse rate

22.

Diabetes insipidus is due to

1. Hyposecretion of vasopressin (ADH)

2. Hypersecretion of insulin

3. Hypersecretion of vasopressin (ADH)

4. None

23.

The contractile protein of skeletal muscle involving ATPase activity is

- 1. Tropomyosin
- 2. Myosin
- 3. or-Actinin
- 4. Toponin
- 24.

If Henle's loop were absent from man nephron, which of the following is to be expected?

1. The urine will be more dilute

2. The urine will be more concentrated

3. There will be thardly any change in the quality and quantity of urine formed

4. There will be no urine formation

25.

Osmotic pressure of a solution is

- 1. more than that of pure solvent
- 2. less than that of pure solvent
- 3. variable depending upon concentration
- 4. equal to that of pure solvent

26.

Which of the following structures or regions is incorrectly paired with its function?

1. limbic system—screening of information between the spinal cord and the brain; regulates arousal and sleep

2. medulla oblongata—homeostatic control center

3. cerebellum—unconscious coordination of movement and balance

4. corpus callosum—band of fibers connecting left and right cerebral hemispheres

27.

Given below a diagram of a section of an alveolus with a pulmonary capillary Which of the following is a correct statement for diffusion of gases?

1. Diffusion of O₂ and CO₂

from A to B or B to A takes place with the same rate.

2. O_2 will diffuse faster from A to B than CO_2 from B to A

3. Only O₂ will diffuse from A to B not CO₂ from B to A
4. Only CO₂ will diffuse from B to A, not O₂ from A to B

28.

Nissl's granules are present in which part of a neuron?

1. Cyton

- 2. Synaptic knobs
- 3. Axon
- 4. Nerve endings

Choose the correct names of A, B, C and D

	A	В	С	D			
1.	1,3 di PGA	3 PGAld	Fr,1,6 di P	Fr. 6P			
2.	3 PGAld	1,3 Di PGA	Fr.1,6 di P	Fr. 6P			
3.	Fr,1, 6 Di P	Fr. 6 P	3 PGAld	1,3 di PGA			
4.	Fr,6P	Fr.1,6 di P	3 PGAld	1,3 di PGA			
30.							
Com 1. G 2. Je 3. H 4. St 31.	Common bile duct open into 1. Gall bladder. 2. Jejunum. 3. Hepato-pancreatic duct. 4. Stomach.						
In F	CG the ventricu	lar contraction	occurs				
 Just after P wave and before Q wave. Just after Q wave but before T wave. In between S-T segment. After the end of T wave 							
 Why breakdown of proton gradient is essential during photosynthesis 1. It leads to production of NADPH. 2. It leads to production of O₂ 3. It leads to production of ATP. 4. Both 1 and 3 							

33.

During aerobic respiration hydrogen from the system is removed by?

- 1. O₂
- 2. NADP
- 3. FMN
- 4. UQ

34.

During 'Erythroblastosis fetalis' there is

- 1. Foetal stem cells fails to form RBC.
- 2. RBC fails to transport O_2 to foetal tissues.
- 3. Agglutination and phagocytosis of RBC.

4. RBC fails to develop Rh antigen on its surface

35.

Urinary excretion is equivalent to GF = Glomerular filtration. TR = Tubular reabsorption. TS = Tubular secretion.

1. GF + TR + TS 2. GF - (TR + TS) 3. GF - TR + TS 4. GF - TS + TR

36.

Which of the following set of hormones can easily pass through the cell membrane of a target cell and bind to specific intracellular receptors ?

- a. Placental progesterone
- b. Aldosterone
- c. Estrogen
- d. Thyroxine
- Mark the correct set
- 1. b&c
- 2. a,b&c
- 3. a &c
- 4. a,b,c & d

37.

Mark the incorrect statement regarding the transport of gas.

1. About 97% of O_2 is transported by RBC.

- 2. Nearly 20-25% of CO₂ is transported by RBC.
- 3. Every 100 ml of deoxygenated blood deliver 4 ml of CO₂ to the alveoli.

4. Every 100 ml of oxygenated blood deliver 20 ml of O_2 to the body tissues

38.

Scala vestibuli and scala tympani are linked with middle ear at

- 1. Oval window and round window, respectively
- 2. Round window and oval window, respectively
- 3. Oval window
- 4. Round window

39.

A peptide hormone which causes dilation of blood vessels and decreases blood pressure is

- 1. Aldosterone
- 2. Adrenaline
- 3. Vasopressin
- 4. Atrial Natriuretic factor

40.

The respiratory centre in the brain is stimulated by

- 1. CO₂ concentration in venous blood
- 2. O₂ concentration in arterial blood
- 3. CO₂ concentration in arterial blood
- 4. O₂ concentration in venous blood
- 41.
 - In photorespiration (C₂ cycle)
 - 1. Glycolate is oxidised in mitochondria
 - 2. CO₂ is released in peroxisome
 - 3. Expenditure of ATP occurs
 - 4. Light is utilised by all three organelles involved

42.

Select the correct option from the following:

1. A = Steroid Hormone; B = Hormone receptor Complex; C = Protein

2. A = Protein Hormone; B = Receptor; C = Cyclic AMP

3. A = Steroid Hormone; B = Receptor; C = Second Messenger

4. A = Protein Hormone; B = Cyclic AMP; C = Hormone-receptor Complex

43.

Which of the following statements is not correct?

1. An action potential in an axon does not move backward because the segment behind is in a refractory phase.

2. Depolarization of hair cells of cochlea results in the opening of the mechanically gated Potassium- ion channels.

High Yielding Test Series - Part Test 6 - Half XIth

Contact Number: +91-8126030103

3. Rods are very sensitive and contribute to daylight vision.

4. In the knee-jerk reflex, stimulus is the stretching of muscle and response is its contraction.

44.

Which part of the human ear plays no role in hearing as such but is otherwise very much required?

- 1. Eustachian tube
- 2. Organ of Corti
- 3. Vestibular apparatus
- 4. Ear ossicles

45.

In ETS, complex V is

- 1. ATP synthase
- 2. NADH dehydrogenase
- 3. Cytochrome c oxidase
- 4. Cytochrome bc₁ complex

46.

Which of the following is the of the organisms and type of t Organisms	incorrectly matched set heir excretory waste? Excretory waste
1. Bony fishes, aquatic amphilians, aquatic insects	Ammonia
2. Terrestrial amphibians cartilaginous fishes	Urea
3. Land snails	Urea
4. Reptiles, birds and insects	Uric acid
47.	

Match the Source gland with its respective hormone and function and select the correct option.

3.	Corpus luteum	Estrogen	Supports Pregnancy
4.	Thyroid	Thyroxine	Regulates blood calcium level

48.

Which one plant factor affect the photosynthesis process?

- 1. CO₂ Concentration
- 2. Light
- 3. Availability of water in the soil
- 4. Amount of chlorophyll
- 49.

Phloem sap is mainly:-

- 1. Water and osmotically inactive disaccharides only
- 2. Water and PGRs only
- 3. Water and osmotically active disaccharides
- 4. Minerals and PGRs only
- 50.

When both ovaries of human females removed then which hormone will decrease in blood?

- 1. Oxytocin
- 2. Estrogen
- 3. Prolactin
- 4. Gonadotropin hormone

	Source	Hormone	Function	51.
gla	gland	Tiofinone	T unction	Principal organ for the absorption of nutrients is
	Antonion		Contraction of	1. Buccal cavity
1.	pituitary	Oxytocin	uterus muscles	2. Stomach
			during child birth	3. Small intestine
			Stimulates	4. Large intestine
2.	Posterior pituitary	Vasopressin	reabsorption of water in the distil tubules in the nephron	52. Why the partial pressure of CO ₂ is high at tissue-site?

1. Due to the saturation of O_2 with Hb	3. Through plasmodesmata		
2. Release of H $^+$ at the tissue site	d. Through xylem		
3. Due to metabolism	1. a, b, & d		
4. Due to the dissociation of HbO_2	2. b, c & d		
	3. a, c & d		
Presence of Ketone bodies in urine are indicative of	4. a, b & c		
1. ARDS	58.		
2. Acute Renal failure	Read following statements and answer in suitable ter given in option:-	m	
3. Diabetes Mellitus	a. The promotion of flowering by a period of lo)W	
4. Snakebite	temperature		
54.	b. Hormonal substance migrates from leaves to shoot f inducing flowering	or	
In the rest state, a subunit of Troponin masks	c. The general metabolic activity of the embryo slo	W	
1. Active binding sites for actin on the myosin filaments	down or in inactive state		
2. Active binding sites for myosin on the myosin filaments	d. Formation of separation layer between tissue		
3. Active binding sites for myosin on the actin filaments	1. Photoperiodism, vernalisation, abscission lay dormancy	er,	
4. Active binding sites for actin on the actin filaments	2. Vernalisation, photoperiodism, dormancy, abscissi	on	
55.	layer		
A small region on the retina of the eye which contains only cones is called	3. Dormancy, photoperiodism, vernalisation, abscissi layer	on	
1. Area centralis	4. Abscission layer, vernalisation, dorman	су,	
2. Fovea centralis	photoperiodisiii		
3. Blindspot	59.		
4. Ora Serrata	Match the Column-l and Column-ll and select the corre	ect	
56.	option?		
How many tropic hormones are secreted by pars distalis	Column I Column II		
1. Five	a. Tetany i) Paralysis of skeletal muscle		
2. Six	b. Muscular dystrophy ii) Inflammation of joints		
3. Eight	c. Arthritis iii) Degeneration of skele	tal	
4. Ten	d. Myasthenia gravis iv) Rapid spasm in muscle		
57.	1 h-i a-ii c-iii d-iv		
How many are associated with apoplastic movement of water?	2. a-iv, b-iii, c-ii, d-i		
1. Through cell wall	3. d-iii, b-ii, c-i, a-iv		
2. Through intercellular space	4. a-iv, c-ii, b-i, d-iii		

60.

At low light condition, which of the following plants respond to high CO_2 conditions ?

- 1. Only C_3 plants
- 2. Only C_4 plants
- 3. Neither C_3 nor C_4 plants
- 4. Both C_3 and C_4 plants

61.

According to essentiality criteria, how many elements are absolutely essential for plant growth :

- 1.15
- 2.17
- 3. 19
- 4.25

62.

Read the following statement & select the correct sequence of steps during symbolic nitrogen fixation?

- (a) interaction between Rhizobium & leguminous plant
- (b) Root nodule formation
- (c) Formation of ammonia
- (d) leghaemoglobin
- (e) Amino acid synthesis
- 1. $a \rightarrow b \rightarrow c \rightarrow e$
- $2.b \rightarrow a \rightarrow d \rightarrow e$
- 3. $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
- 4. $a \rightarrow b \rightarrow d \rightarrow e \rightarrow c$

63.

Cells of Human body exhibit which type of movement :-

- 1. Amoeboid
- 2. Muscular
- 3. Ciliary
- 4. All of the above

64.

Adult human has :-

1. Diphyodont and homodont dentition

- 2. Thecodont homodont dentition
- 3. Thecodont and monophyodont dentition
- 4. Diphyodont and heterodont dentition

65.

Every 2000 mL of deoxygenated blood delivers approximately, how much mL CO₂ to alveoli?

- 1.4 mL
- 2. 4.2 mL
- 3.8 mL
- 4. 80 mL
- 66.

Which system of blood vessels is present in our body exclusively for the circulation of blood to and from the cardiac musculature?

- 1. Portal system
- 2. Shunting
- 3. Coronary system
- 4. Double circulation
- 67.

Increasing osmolarity towards the inner medullary interstitium is mainly caused by :-

- 1. NaCl and uric acid
- 2. DCT and collecting duct
- 3. PCT and vasa recta
- 4. NaCl and urea
- 68.

Consider the following four statements (a-d) and select the option which includes all the correct ones only :-

a. Faecal accumulation in the rectum initiates a neural reflex causing an urge for its removal.

- b. Reflex action for vomiting is controlled by medulla.
- c. Irregular bowel movements cause constipation.

d. Vomiting is the ejection of stomach contents through anus.

- 1. Statements (b), (c) and (d)
- 2. Statements (a), (b) and (d)
- 3. Statements (c), (d)

2. (2)

3. (3)

High Yielding Test Series - Part Test 6 - Half XIth

Contact Number: +91-8126030103

4. Statements (a), (b) and (c)

69.

By the contration in radial muscle of diaphragm it 4. (4) become flattened in shape, so, volume of thoracic cavity increases in :- 72.

- 1. Anterior-posterior axis
- 2. Dorsal-ventral axis
- 3. Anterior-lateral axis
- 4. Dorsal-lateral axis

70.

In which compounds does sucrose is broken by Enzyme Invertase?

В

Renal

Artery

Renal

Renal

Artery

Renal

vein

vein

C

Renal

capsule

Glisson's

Glisson's

capsule

Renal

capsule

capsule

- 1. Glucose and galactose
- 2. Galactose and Fructose
- 3. Manose and glucose
- 4. Glucose and Fructose

A

(1)

(2)

(3)

(4)

Medullary

pyramid

Cortex

Medullary

Medullary

pyramid

pyramid

71.

Sugar n	netab	olism	s, sez	c cortio	coids,	salt	retaining	& stress	
manage	ement	horm	ones	releas	es fro	m :-			

- 2. Cyclic photophosphorylation
- 3. Photolysis of H2O

ined in snape, so, volume of unoracle cavity 72. psterior axis Brain stem consists except one : tral axis 1. Pons tral axis 2. Medulla

- 3. Midbrain
- 4. Cerebellum & Cerebrum
- 73.

Calyx

High Yielding Test Series - Part Test 6 - Half XIth

Contact Number: +91-8126030103

4. Formation of NADPH	Hormone	Source	Function		
76.	Name	organ	Tunction		
A cell is placed in an isotonic solution, the cell will remain	1.	Gastrin	Stomach	Stimulates gastric	
1. Remain unchanged				secretion	
2. Plasmolysed	2	CID		Inhibits gastric	
3. Become Turgid	2.	GIP	Duodenum	secretion	
4. Deplasmolysed				Stimulatos	
77.	3	Secretin	Duodenum	gastric	
Match the following columns and select the correct	5.	Secretin	Duotentum	secretion and motility	
option.				moundy	
A. IAA i. Herring sperm DNA		CCV	Duodonum	Stimulates	
B. ABA ii. Bolting	4.	PZ	mainly	Pancreatic	
C. Ethylene iii. Stomatal closure				juice	
D. GA iv. Weed-free lawns	80.				
E. Cytokinin v. Ripening of fruits	The maximu	m volume of	f air a person ca	n breathe in after	
1. A-iv, B-iii, C-v, D-ii, E-i 2. A-v, B-iii, C-iv, D-ii, E-i	a forced expr 1. TV + IRV	iration is			
3. A-iv, B-i, C-v, D-iii, E-ii	2. TV + ERV				
4. A-V, D-III, C-II, D-I, E-IV	3. ERV + TV	/ + IRV			
/o.	4. ERV + RV	7			
contraction	81.				
(i) Action potential enters muscle fibre through T-tubules	Select the inc	correct stater	nent.		
(ii) Ca ²⁺ binds with troponin-C	1. Carotenoi	ds protect th	e plant from ex	cessive heat and	
(iii) Actomyosin cross bridge formation	2 All pigr	pents other	than chloron	byll are called	
(iv) Sliding of thin myofilament along the thick myofilament	accessory pig	gments	than chiorop	are caned	
(v) Exposure of active sites on actin filaments	3. The electro	ons removed	from PS II are	never replaced	
(vi) Release of Ca ²⁺ from sarcoplasmic reticulum	4. Cyclic phe lamellae mer	otophosphor nbrane	ylation occurs	mostly in stroma	
	82.				
1. (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (v) \rightarrow (vi)	Which staten	nent is not co	orrect for Krebs	' cycle	
2. $(vi) \rightarrow (v) \rightarrow (iv) \rightarrow (iii) \rightarrow (ii) \rightarrow (i)$	1. Krebs' cyc	cle occurs in	mitochondrial 1	natrix	
3. (i) \rightarrow (ii) \rightarrow (vi) \rightarrow (v) \rightarrow (iii) \rightarrow (iv)	2. Pyruvic ac	cid condense	with OAA to fo	orm citric acid	
4. (i) \rightarrow (vi) \rightarrow (ii) \rightarrow (v) \rightarrow (iii) \rightarrow (iv)	3. 3 NADH Krebs' cvcle	$_2$ and 1 FA	.DH ₂ are prod	uced during one	
73.	4. Succinate	dehydrogena	ase is found atta	ched to inner	

А

mitochondrial membrane

83.

Which of the following plant growth regulators is derived from adenine but does not occur naturally in plants.

a. Salivary amylase

b. Nucleosidase

d. Sub-mucosa

c. Mucosa layer

1. NAA

- 2. Zeatin
- 3. Kinetin
- 4.2,4-D

84.

Match Column-I with Column-II Column I Column II

(i) Brunner's gland

- (ii) Rugae
- (iii) Succus entericus

(iv) Carbohydrate splitting enzyme

- Choose the correct option
- 1. i-d, ii-a, iii-b, iv,-c
- 2. i-c, ii-d, iii-b, iv-a
- 3. i-b, iii-c, ii-a, iv-d
- 4. i-d, ii-c, iii-b, iv-a

85.

Red muscle fibres differs from white muscle fibres in having

- 1. More sarcoplasmic reticulum
- 2. Less myoglobin content
- 3. More number of mitochondria
- 4. High lactic acid due to anaerobic oxidation

86.

Water potential of pure water at standard temperatures, which is not under any pressure is

1. Equal to ψ_s of a solution

2. Equal to zero

3. Always negative

4. Any positive value above zero

87.

Insulin causes <u>A</u> and stimulates <u>B</u>.

В

Choose the option that correctly fills A and B.

- 1. Hypoglycemia Gluconeogenesis
- 2. Hyperglycemia Glycogenesis
- 3. Hyperglycemia Gluconeogenesis
- 4. Hypoglycemia Glycogenesis

88.

Nitrococcus is

- 1. Photosynthetic
- 2. Nitrifying bacteria
- 3. Helpful in nitrate assimilation
- 4. Nitrogen fixing bacteria

89.

How many of the following elements are considered to be micronutrients for plants?

Iron, Phosphorus, Sulphur, Magnesium, Copper, Boron, Zinc, Chlorine.

- 1. Four
- 2. Three
- 3. Six
- 4. Five
- 90.

When (i) are used in respiration the RQ is (ii). Select the correct option for (i) and (ii) that make the sentence a correct sense.

(i) Carbohydrates, (ii) > 1
 (i) Proteins, (ii) > 1
 (i) Fats, (ii) < 1
 (i) Malic acid, (ii) < 1

91.

The optically active alkane with lowest molar mass is:

4. CH₃CH₂. CH₂CH₃

The IUPAC name of the compound

1. 3-keto-2-methylhex-4-enal

2. 5-formylhex-2-en-3-one

3. 5-methyl-4-oxohex-2-en-5-al

4. 3-keto-2-methylhex-5-enal

93.

Hydrogen exists in the atomic state in these compounds -

- 1. Metallic hydrides
- 2. Ionic hydrides
- 3. Molecular hydrides
- 4. Water

94.

In the Solvay process of manufacture of sodium carbonate, the raw materials used are :

- 1. Aqueous NaOH, NH_3 and CO_2
- 2. Molten NaOH, *NH*³ and CO
- 3. Brine NaCl, *NH*₃ and CO
- 4. Brine NaCl, NH_3 and CO_2

95.

Alkali metal ions are-

1. Diamagnetic and colored

- 2. Diamagnetic and colorless
- 3. Paramagnetic and colored
- 4. Paramagnetic and colorless
- 96.

Insoluble compound in acetic acid is-

- 1. Calcium oxide
- 2. Calcium carbonate
- 3. Calcium oxalate
- 4. Calcium hydroxide
- 97.

The no. of isomeric sodium salt that will be required to obtain neopentane.

- 1.3
- 2.1
- 3.4
- 4.6

98.

Which one is the correct order of acidity?

- CH = CH > CH₃ C = CH > CH₂ = CH₂ > CH₃ CH₃
 CH = CH > CH₂ = CH₂ > CH₃ C = CH > CH₃ CH₃
 CH₃ CH₃ > CH₂ = CH₂ > CH₃ C = CH > CH = CH
 CH₂ = CH₂ > CH₃ CH₃ C = CH > CH = CH
- 99.

The most suitable method of separation of 1:1 mixture of ortho and para-nitrophenols is:

- 1. Chromatography
- 2. Crystallization
- 3. Steam distillation
- 4. Sublimation
- 100.

The correct statement regarding electrophile is

1. Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile

2. Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile

3. Electrophile can be either neutral or positively charged species and can form a bond accepting a pair of electrons from a nucleophile

4. Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile

101.

Which among the given molecules can exhibit tautomerism?

- 1. III only
- 2. Both I and III
- 3. Both I and II
- 4. Both II and III
- 102.
- The compound C_7H_8 undergoes the following reactions : $3Cl_2/hv Br_2/Fe Zn/HCl$
- $C_7H_8 \rightarrow A \rightarrow B \rightarrow A$
- The product 'C' is
- 1. m–bromotoluene
- 2. o–bromotoluene
- 3. 3–bromo–2,4,6–trichlorotoluene
- 4. p-bromotoluene
- 103.

Consider the nitration of benzene using mixed conc. H_2SO_4 and HNO_3 . If a large amount of $KHSO_4$ is added to the mixture, the rate of nitration will be 1. slower

- 2. unchanged
- 3. doubled
- 4. faster
- 4. faster

104.

Two possible stereo-structures of CH₃CHOH.COOH, which are optically active, are called

- 1. Diastereomers
- 2. Atropisomers

108.

- 3. Enantiomers
- 4. Mesomers

105.

Which one of the following is not a common component of Photochemical Smog?

- 1. Ozone
- 2. Acrolein
- 3. Peroxyacetyl nitrate
- 4. Chlorofluorocarbons

106.

In Kjeldahl's method for estimation of nitrogen present in the soil sample, ammonia evolved from 0.75g of sample neutralized 10ml. of 1M H_2SO_4 The percentage of nitrogen in the soil is:

- 1. 37.33
- 2. 45.85
- 3. 25.75
- 4. 43.13

107.

Structure of the compound whose IUPAC name is 3-Ethyl-2hydroxy-4-methylhex-3-en-5-ynoic acid is :

111.

High Yielding Test Series - Part Test 6 - Half XIth

Contact Number: +91-8126030103

Green chemistry means such reactions which

3. are related to the depletion of ozone layer

one of the following represents its *R* configuration?

2. reduce the use and production of hazardous chemicals

1. produce colour during reactions

4. study the reactions in plants

C₂H₅

C - Cl

Н

1. H₃C -

The correct order of increasing bond length of C-H, C-O, C-C and C=C is

- 1. C C < C = C < C O < C H
- 2. C O < C H < C C < C = C
- 3. C H < C O < C C < C = C
- 4. C H < C = C < C O < C C

109.

The Lassaigne's extract is boiled with conc HNO_3 while testing for halogens. Because .. CH_3 — CHCl— CH_2 — CH_3 has a chiral center. Which

- 1. help in the precipitation of AgCl
- 2. increases the solubility product of AgCl
- 3. increase the concentration of NO_3^- ions
- 4. decomposes Na_2S and NaCN, if formed

110.

4

In the following the most stable conformation of n-butane is

- 2. 1-chloro-1-oxo-2,2-dimethylpentane
- 3. 2-ethyl-3-methylbutanoyl chloride

v.shikshaview.com info@shikshaview.com facebook.com/shikshaview twitter.com/shikshaview youtube.com/shikshaview

C1

is :

0

, b anneurj pentanoj r emorrae	3. H_2O_2
114.	4. <i>O</i> ₂
The most suitable reagent for the following conversion, is:	119.
H ₃ C CH,	Para- hydrogen at room temp is:
$H_3C - C \equiv C - CH_3 \longrightarrow$	1. less stable than ortho- hydrogen
Н	2. more stable than ortho- hydrogen
cis-2-butene	3. as stable as ortho- hydrogen
1. Hg^{2+}/H^{+} , H_2O	4. none of these
2. Na/liquid NH ₃	120.
3. H ₂ , Pd/C, auinoline	In which of the following reactions H_2O_2 acts as a
4 7p/HCl	reducing agent?
4. Zh/HCi	a. $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$
The most harmful air pollutant produced by automobiles	b. $H_2O_2 - 2e^- \rightarrow O_2 + 2H^+$
is	c. $H_2O_2 + 2e^- \rightarrow 2OH^-$
1. <i>HNO</i> ₂	$d = 0 + 200^{-1} - 26^{-1} - 0 + 20^{-1} - 0$
2. NO	$\mathbf{u}_{2}\mathbf{u}$
3. SO ₂	1. a, b
4. CO	2. c, d
116.	
SO_2 pollution is indicated by	4. b, d
1 Grasses	121. Hydrogen perovide in its reaction with
2. Mosses	KIO_4 and NH_2OH respectively is acting as a
3. Lichens	1. reducing agent, oxidising agent
4. Fossils	2. reducing agent, reducing agent
117.	3. oxidising agent, oxidising agent
Soil erosion can be prevented by	4. oxidising agent, reducing agent
1. Overgrazing	122.
2. Removal of vegetation	When $SnCl_2$ reacts with $HgCl_2$, the product formed are:
3. Afforestation (Plantation)	1. $Sn + HgCl_A$
4. Increasing bird population	$2 \operatorname{Sn} + \operatorname{Cl}_{2} + \operatorname{Ha}_{2} \operatorname{Cl}_{2}$
118.	
For the bleaching of hair, the substance used is:	s. Shula and $Hg_2 Ul_2$
1. SO ₂	4. None of these
2. bleaching powder	123.

Which of the following is amphoteric?

- 1. CO₂
- 2. PbO₂

4. SeO₂

124.

Litharge is not commonly used in:

1. manufacture of special glasses

- 2. glazzing pottery
- 3. preparing paints
- 4. lead storage battery

125.

The increasing order of the reactivity of the following compounds towards electrophilic aromatic substitution reaction is:

1. III
$$< I < II$$

- 2. III < II < I
- 3. II < I < III
- 4. I < III < I
- 126.

The liquefied gas that is used in dry cleaning along with a suitable detergent is-

- 1. Water gas
- 2. Petroleum gas
- 3. NO₂
- 4. CO₂
- 127.

Which of the following pairs of structures does not represent isomers/

128.

(+)-mandelic acid has a specific rotation of +158°. What would be the observed specific rotation of a mixture containing 25% (-)-mandelic acid and 75% (+)-mandelic acid?

- 1. +79°
- 2. -118.5°
- 3. -79°
- 4. +118.5°
- 129.

The total number of optically active isomers for $CH_2OH(CHOH)_3CHO$ are

- 1. 16
- 2.8

3. 4
 4. 2

130.

The compound with an isopropyl group is

- 1. 2, 2, 3, 3-tetramethylpentane
- 2. 2, 2-dimethylpentane
- 3. 2, 2, 3-trimethylpentane
- 4. 2-methylpentane
- 131.

Which of the following compounds will show geometrical isomerism?

- 1. 2-butene
- 2. Propene
- 3. 1-phenylpropene
- 4. 2-methylbut-2-ene
- 1. 1, 2
- 2.3,4
- 3. 1, 2, 3
- 4.1,3

132.

High Yielding Test Series - Part Test 6 - Half XIth

Contact Number: +91-8126030103

How many optically active stereoisomers are possible for butan-2-, 3-diol?

- 2.2
- 3.3
- 4.4

133.

Arrange the following groups in order of decreasing - I (inductive) effects:

134.

The product(s) obtained via oxymercuration (HgSO₄ 137. + H₂SO₄) of but-1-yne would give

1. CH₃CH₂ - C - CH₃

2. $CH_3CH_2CH_2$ -CHO

3. $CH_3CH_2CHO + HCHO$

4. CH₃ CH₂COOH + HCOOH

135.

III.

Tautomerism is exhibited by

IV. 1. 1 and 2 2. 1, 3 and 4

3. 1, 2 and 4

4. 1, 2, 3 and 4

136.

A block of mass 4 kg hangs from a spring of spring constant k = 400 N/m. The block is pulled down through 15 cm below the equilibrium position and released. What is its kinetic energy when the block is 10 cm below the equilibrium position ? [Ignore gravity]

1.5J

2. 2.5 J

3.1J

4.1.9 J

A metre stick is swinging in vertical plane about a horizontal axis passing through its one end , undergoes small oscillation of frequency f_0 . If the bottom half of the stick were cut off, then its new frequency of small oscillation would become -

3. $2f_0$

4. $2\sqrt{2}f_0$

138.

A traveling wave in a stretched string is described by

the equation $y = Asin(kx - \omega t)$. The maximum particle velocity is-

2. ω/k

3. $d\omega/dk$

4. x/t

139.

The ratio of the speed of sound in nitrogen gas to that in helium gas, at 300 K is -

$$1. \sqrt{\frac{2}{7}}$$
$$2. \sqrt{\frac{1}{7}}$$
$$3. \frac{\sqrt{3}}{5}$$
$$4. \frac{\sqrt{6}}{5}$$

140.

A cubical block of wood of side 10 cm floats at the interface between oil and water with its lower surface horizontal and 4 cm below the interface. The density of oil is 0.6 g cm^{-1} . The mass of block is

- 1. 706 g
- 2. 607 g
- 3. 760 g
- 4. 670 g
- 141.

A diver is 10 m below the surface of water. The approximate pressure experienced by the diver is

1. 10⁵ Pa

2. 2 × 10^5 Pa

3. 3 ×
$$10^5$$
 Pa

4. 4
$$\times 10^5$$
 Pa

142.

The volume V versus temperature T graphs for a certain amount of a perfect gas at two pressures P_1 and P_2 are

shown in the figure. Here

4.Pressures can't be related

143.

The following figure shows two air-filled bulbs connected by a U-tube partly filled with alcohol. What happens to the levels of alcohol in the limbs X and Y when an electric bulb placed midway between the bulbs is lighted?

1. The level of alcohol in limb X falls while that in limb Y rises

2. The level of alcohol in limb X rises while that in limb Y falls

3. The level of alcohol falls in both limbs

4. There is no change in the levels of alcohol in the two limbs

144.

Find the rate of flow of glycerine of density 1.25×10^3 kg/m³ through the conical section of a pipe, if the radii of its ends are 0.1m and 0.04 m and the pressure drop across its length is 10N/m².

1.
$$3.14 \times 10^{-4} \text{ m}^3/\text{s}$$

2. $6.28 \times 10^{-4} \text{ m}^3/\text{s}$
3. $12.56 \times 10^{-4} \text{ m}^3/\text{s}$

4. $1.57 \times 10^{-4} \text{ m}^{3/\text{s}}$

145.

The graph AB shown in figure is a plot of temperature of a body in degree Celsius and degree Fahrenheit. Then

1. slope of line AB is 9/5

- 2. slope of line AB is 5/9
- 3. slope of line AB is 1/9
- 4. slope of line AB is 3/9

146.

At a pressure of 24×10^5 dyne/cm², the volume of O₂ is 10 litre and mass is 20g. The r.m.s velocity will be–

1.800 m/s

- 2. 400 m/s
- 3. 600 m/s
- 4. Data is incomplete

```
147.
```

Three liquids of densities d,2d and 3d are mixed in equal 151. proportions of weights. The relative density of the mixture is

1. $\frac{11d}{7}$	
2. $\frac{18d}{11}$	
3. $\frac{13d}{9}$	
4. $\frac{23d}{18}$	

148.

In thermodynamic process, 200 Joules of heat is given to a gas and 100 Joules of work is also done on it. The change in internal energy of the gas is

- 1. 100 J
- 2. 300 J
- 3. 419 J

4. 24 J

149.

If the ratio of specific heat of a gas at constant pressure to that at constant volume is γ , the change in internal energy of a mass of gas, when the volume changes from *V* to 2V at constant pressure *p*, is

1. $R/(\gamma - 1)$

2. pV

3. pV/(γ - 1)

4. pV(γ - 1)

150.

In the thermodynamic process shown in figure, the work done by the system along $A \rightarrow B \rightarrow C$ is 50 J and change in internal energy during $C \rightarrow A$ is 30 J, then heat supplied during $A \rightarrow B \rightarrow C$ is

If the length of a cylinder on heating increases by 2%, the area of its base will increase by:

- 1. 0.5%
- 2.2%
- 3. -2%
- 4.4%

152.

The time periods for the figures (a) and (b) are T_1 and T_2 respectively. If all surfaces shown below are smooth, then the ratio $\frac{T_1}{T_2}$ is-

+91-8126030103

High Yielding Test Series - Part Test 6 - Half XIth Contact Number: +91-8126030103

- 2. 1:1
- 3. 2:1
- 4. $\sqrt{3}: 2$

The displacement x of a particle varies with time t as

x = A sin $\left(\frac{2\pi}{T}t + \frac{\pi}{3}\right)$. Time taken by particle to reach	157.
from x = $\frac{A}{2}$ to x = $-\frac{A}{2}$ is-	An as
1. $\frac{T}{2}$	ene pre
2. $\frac{T}{3}$	
3. $\frac{T}{12}$)
4. $\frac{T}{6}$	

154.

The displacements of the particle from the extreme position when its kinetic energy is $\frac{1}{4}$ th of the maximum value and $\frac{3}{4}$ th of the maximum value are x_A and x_B respectively. The ratio $\frac{x_A}{x_B}$ is :

- 1. $\sqrt{3}$: 1
- 2. 1:2
- 3. 1: $\sqrt{3}$
- 4. $(2 \sqrt{3}): 1$

Four rods of same material with different radii r and length l are used to connect two heat reservoirs at different temperatures. In which of following case, heat conduction is fastest?

1.
$$r = \frac{1}{3}$$
 cm, $l = \frac{1}{9}$ cm

2. *r* = 3cm, *l* = 9cm

- 3. r = 4cm, l = 8cm
- 4. r = 1cm, l = 1cm

156.

A gas performs minimum work when it expands-

- 1. Isochorically
- 2. Isobarically
- 3. Adiabatically
- 3. Isothermally

An ideal gas goes from A to B via two processes l and ll as shown. If ΔU_1 and ΔU_2 are the changes in internal energies in the process I and II respectively, then (P: pressure, V: volume)

1. $\Delta U_1 > \Delta U_2$ 2. $\Delta U_1 < \Delta U_2$ 3. $\Delta U_1 = \Delta U_2$ 4. $\Delta U_1 \le \Delta U_2$ 158.

The internal energy of ideal gas increases in-

- 1. Adiabatic expansion
- 2. Adiabatic compression

3. Isothermal expansion

4. Isothermal compression

159.

A liquid filled in a container has plane meniscus. If $\boldsymbol{\theta}$ is angle of contact, then

- 1. $\theta = 0^{\circ}$
- 2. $\theta = 90^{\circ}$
- 3. $\theta < 90^{\circ}$
- 4. θ = 180°

160.

A large open tank with a square hole of side 0.1 cm in the wall at a depth of 0.2 m from the top is completely filled with a liquid. The rate of flow of liquid (in cm^3/s) through the hole will be-

1.1

- 2.2
- 3.3
- 4.4

161.

The property of surface tension of the liquid is due to

1. The gravitational force of attraction between molecules

2. Cohesive forces between molecules

3. The adhesive force between molecules

4. Formation of ionic bonds among molecules

162.

From the given diagram the velocity v_3 is

- 1. 4 m/s
- 2.3 m/s
- 3.1 m/s

4. 2 m/s

163.

From the given diagram, the speed with which water leaves the tube B of small diameter is-

3.
$$\sqrt{2g(h_1 + h_2)}$$

4. $\sqrt{2g(h_2 - h_1)}$

164.

Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Then the change in internal energy of the gas is:

1.0

- 2. 5 J
- 3. 1 J
- 4. 3 J

165.

The figure shows a plot of PV/T versus P for $1.00 \times 10^{-3} kg$ of oxygen gas at two different temperatures.

Shiksha Wew.com

High Yielding Test Series - Part Test 6 - Half XIth Contact Number: +91-8126030103

Then relation between T_1 and T_2 is:

1.
$$T_1 = T_2$$
2. $T_1 < T_2$ 3. $T_1 > T_2$ 4. $T_1 \ge T_2$

166.

Which of the following examples represent simple harmonic motion?

1. the rotation of the earth about its axis.

2. the motion of an oscillating mercury column in a U-tube.

3. general vibrations of a polyatomic molecule about its equilibrium position.

4. A fan rotating with constant angular velocity.

167.

The figure depicts four x-t plots for the linear motion of a particle.

Which of the following is true?

1. (a) is periodic but (c) is not periodic.

- 2. (b) is periodic but (d) is not periodic.
- 3. (b) and (d) are periodic.
- 4. Only (c) is periodic.

168.

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that the speed of a transverse wave on the wire equals the speed of sound in dry air at $20^{\circ}C = 343$ m/sec.

- 1. 4. 3 × 10³ N
- 2. 3. 2 × $10^4 N$
- 3. 2. 06 × $10^4 N$
- 4. 1. 2 × 10⁴ N

169.

A bat emits an ultrasonic sound of frequency 1000 kHz in air. If the sound meets a water surface, what is the wavelength of the reflected sound? (Speed of sound in air is 340 m/sec and in water 1486 m/sec)

1.
$$3.4 \times 10^{-4} m$$

2. $1.49 \times 10^{-3} m$
3. $2.34 \times 10^{-2} m$
4. $1.73 \times 10^{-3} m$

170.

What is the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity 25.0 m^3 at a temperature of 27 °C and 1 atm pressure?

- 1. 6. 1×10^{23} molecules.
- 2. 6. 1×10^{26} molecules.
- 3. 7. 1 × 10^{23} molecules.
- 4. 7. 1×10^{26} molecules.

171.

What is the average thermal energy of a helium atom at room temperature (27 °C)?

1. $11.21 \times 10^{-20} J$ 2. $3.09 \times 10^{-16} J$ 3. $6.21 \times 10^{-21} J$ 4. $5.97 \times 10^{-19} J$

172.

⁸ *J* of work per minute and extracts 3.6×10^9 *J* of heat per minute from its boiler. The efficiency of the engine is:

```
1.15%
```

2.18%

3.13%

4.11%

173.

A refrigerator is to maintain eatables kept inside at $9^{\circ}C$. If room temperature is $36^{\circ}C$, the coefficient of performance is:

1.9.3

2.12.4

3. 11.2

4.10.4

174.

In an experiment on the specific heat of a metal, a 0.20 kg block of the metal at 150 °C is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing 150 cm^3 of water at 27 °C. The final temperature is 40 °C. The specific heat of the metal is:

(Heat losses to the surroundings are negligible)

- 0. 40 J g⁻¹ K⁻¹
 0. 43 J g⁻¹ K⁻¹
- 3. 0. 54 $J g^{-1} K^{-1}$
- 4. 0. 61 $J q^{-1} K^{-1}$

175.

Which of the following relationships between the acceleration 'a' and the displacement 'x' of a particle involve simple harmonic motion?

1.
$$a = 0.7x$$

2. $a = -200x^2$

3. a = -10x

4.
$$a = 100 x^3$$

176.

A spring having a spring constant 1200 N/m is mounted on a horizontal table as shown in the figure. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released. The frequency of oscillations is:

1. 3. 0 s^{-1}

2. 2. 7 s⁻¹

3. 1. 2 s^{-1}

4, 3.2 s⁻¹

177.

For the travelling harmonic wave $y(x, t) = 2.0\cos 2\pi (10t - 0.0080x + 0.35)$

where x and y are in cm and t in sec. The phase difference between the oscillatory motion of two points separated by a distance of 4 m will be:

- 1. 0. 8π rad
- 2. π rad
- 3. 6. 4π rad
- **4.** 4π rad

178.

A one meter long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the minimum tube length is 25.5 cm. The speed of sound in air at the temperature of the experiment is: (The edge effects may be neglected.)

- 1. 324.16 m/s
- 2. 320 m/s
- 3. 345 m/s
- 4. 346.8 m/s

179.

Two sitar strings A and B playing the note 'Ga' are slightly out of tune and produce beats of frequency 6 Hz. The tension in the string A is slightly reduced and the beat frequency is found to be reduced to 3 Hz. If the original frequency of A is 324 Hz, what is the frequency of B?

- 1. 316 Hz
- 2. 318 Hz
- 3. 319 Hz

4. 314 Hz

180.

A bat is flitting about in a cave navigating via ultrasonic beeps. Assume that the sound emission frequency of the bat is 40 kHz. During one fast swoop directly toward a flat wall surface, the bat is moving at 0.03 times the speed of sound in the air. What frequency does the bat hear reflected off the wall?

1. 41.27 kHz

2. 42.67 kHz

3. 41.23 kHz

4. 42.47 kHz

